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INTRODUCTION

Calculus is the mathematical study of continuous change. The discovery of calculus
is often attributed to two men, Isaac Newton and Gottfried Leibniz, who
independently developed its foundations. It has two major branches differential
calculus and integral calculus. Differential calculus is concerned with instantaneous
rates of change and slopes of curves, and integral calculus is concerned with
accumulation of quantities and the areas under and between curves.

One should understand that the main purpose of learning calculus is not just
knowing about differentiation and integration but also knowing how to apply
differentiation and integration to solve problems. For that, one must have sound
understanding of the concepts. If you are a beginner in calculus, then be sure that
you have had the appropriate knowledge of algebra and trigonometry.

This book, Calculus, is divided into four blocks, which are further subdivided
into fourteen units. The first unit introduces the concept of differentiation while
successive differentiation has been discussed in the following unit. The third unit
deals with the concept of partial differentiation and Euler’s theorem. Polar
coordinates and asymptotes are focused on in the fourth unit while the fifth unit
explains the concept of envelopes and evolutes. Integration by substitution method
has been discussed in the sixth unit while seventh unit deals with definite integrals
and integration by parts. Eighth units discusses the concept of double and triple
integrals and their properties and Beta and Gamma functions have been explained
in the following unit. Differential equations have been explained in the tenth unit
while eleventh units focuses on homogeneous equations and first order linear
equations. Twelfth unit discusses about linear equations of order two while thirteenth
unit introduces you to the concept of Laplace transform. The last units discusses
partial differential equations and various method to form them.

The book follows the self-instructional mode wherein each unit begins with
an Introduction to the topic. The Objectives are then outlined before going on to
the presentation of the detailed content in a simple and structured format. Check
Your Progress questions are provided at regular intervals to test the student’s
understanding of the subject. A Summary, a list of Key Words and a set of Self-
Assessment Questions and Exercises are provided at the end of each unit for
recapitulation.
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BLOCK - I
DIFFERENTIATION, POLAR CO-ORDINATES

AND ASYMPTOTES

UNIT 1 DIFFERENTIATION

Structure
1.0 Introduction
1.1 Objectives
1.2 Differentiation – An Introduction
1.3 Parametric Differentiation
1.4 Logarithmic Differentiation
1.5 Differentiation of Implicit Functions
1.6 Answers to Check Your Progress Questions
1.7 Summary
1.8 Key Words
1.9 Self Assessment Questions and Exercises

1.10 Further Readings

1.0 INTRODUCTION

This unit introduces you to the concept of differentiation. Differentiation plays an
important part in mathematics. Differentiation has applications to nearly all
quantitative disciplines. For example, in physics, the derivative of the displacement
of a moving body with respect to time is the velocity of the body, and the derivative
of velocity with respect to time is acceleration. The derivative of the momentum of
a body equals the force applied to the body; rearranging this derivative statement
leads to the famous F = ma equation associated with Newton’s second law of
motion. After defining differentiation, this unit takes you to the different methods
used to differentiate a function. There are two methods discussed here - parametric
differentiation and logarithmic differentiation. Both of these methods have their
own unique importance in calculus. In the end, you will learn the differentiation of
implicit functions.

1.1 OBJECTIVES

After going through this unit, you will be able to:
• Understand the concept of differentiation
• Learn the process of parametric differentiation
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• Learn the process of logarithmic differentiation
• Discuss differentiation of implicit functions

1.2 DIFFERENTIATION – AN INTRODUCTION

Differentiation method is specifically used for finding or estimating the rate of
change when one quantity is compared with another, precisely when the rate of
change is not constant. Following are some definitions of differentiation.

Definitions

1. In mathematics, ‘Differentiation’ is the process of finding the derivative,
or rate of change, of a function.

2. Differentiation is the process of finding or evaluating the rate of change
of dependent quantity with respect to independent quantity, i.e., y = fx
where y is dependent with respect to x.

As defined above, differentiation method is used for “finding a function that
outputs the rate of change of one variable with respect to another variable”.

In differential calculus, the key objects are the derivative of a function
and interrelated notions, such as the differential and its various applications.
Fundamentally, the derivative of a function at a selected input value defines the
rate of change of the function that is close or adjacent to that particular input value.
Thus, differentiation is the method used to find a derivative. Geometrically, the
derivative of a function at a specified point is approximated as the slope of the
tangent line on the graph of the function at the specified point, as long as the
derivative exists and is well-defined at that selected point. Derivatives are often
used for finding the maxima and minima of a function and the equations which
involve the derivatives are termed as differential equations.

Normally, when we consider a real-valued function of a single real
variable, then the derivative of a function at specified or selected point usually
defines or determines the best linear approximation to the function at that
specified or selected point. The derivative is used for determining the maximum
and minimum values of specific or precise functions, such as profit, loss, cost, etc.

Both the calculus, the differential and the integral are linked or interrelated
through the fundamental theorem of calculus, which specifies that the differentiation
method is the reverse or opposite to integration method.

Differentiation has its applications in almost all types of quantitative disciplines
and helps in solving various types of real-world problems, such as in the field of
physics, the displacement derivative of any object in motion with respect to time is
termed as the velocity of the moving object, and this derivative of velocity with
respect to time is termed as acceleration. Furthermore, in chemistry the derivative
can also be approximated for the reaction rate of any chemical reaction while in
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the operations research, the derivatives are specifically used for efficiently
determining the methods for transporting materials or supplies and designing
factories.

In various fields of mathematics, the derivatives and their generalizations are
frequently used for solving the problems related to functional analysis, complex
analysis, differential geometry, abstract algebra and measure theory.

Let us understand the concept of differentiation with the help of a simple
example. Assume that we have to track the position of a moving vehicle on a road.
To track its position we assign it a variable ‘x’. In the meantime the position of the
moving vehicle will change as the time changes, i.e., the variable x is dependent on
time or in other words x = f(t). Differentiation provides a function dx/dt which
characterizes or represents the speed of the moving vehicle, i.e., the rate of change
of the position of moving vehicle with respect to time.

Approximating the ‘Rate of Change’ which is ‘Not Constant’

When we throw a round disc straight up in the air, then after some time the speed
of disc slows down as the gravity or the gravitational force acts on the disc. As a
result the disc direction changes and it starts falling down. During this whole motion,
i.e., when the disc was moving straight up and when the disc was falling down the
velocity keeps changing continuously. Basically, the motion gradually changes from
positive (when the disc is thrown straight up) to negative, i.e., the motion decreases
and becomes zero (when the disc is falling downwards). Therefore, when the disc
is moving straight up then it has negative acceleration while the acceleration becomes
positive when the disc is falling down.

Figure 1.1 shows the graph of disc height (in metres) against time (in seconds).

Fig. 1.1 Graph of Disc Height at Time ‘t’

In the Figure 1.1 the slope of the disc height at time t graph is continuously
changing or varying while in motion. Initially or at the starting, the graph shows a
steep positive slope which indicates that the velocity is large or enormous at the
time when we throw the disc straight up. Subsequently, the slope decreases
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gradually or becomes less until it reaches 0, i.e., when the disc is at its maximum
point then the velocity becomes zero (refer Figure 1.2). When the disc starts
falling downwards then the slope is referred as negative since it corresponds to
the negative velocity as shown in Figure 1.2.

Fig. 1.2 Graph of Disc Height Showing Slopes

Now if we zoom in the graph at the section near t = 1, i.e., the rectangular
section marked in Figure 1.2, then it looks as shown in Figure 1.3, zoomed view.
The approximation is calculated on the section between t = 0.9 s and t = 1.1 s.

Fig. 1.3 Zoomed Section of Graph between t = 0.9 s and t = 1.1 s

When the selected curved section of graph is zoomed in then the curved
line appears to be as a straight line. Almost perfect approximation can be made
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about the slope of the curve at the specified point t = 1, which is referred as the
slope of the tangent to the curve (see the dim line near the straight line). The
approximation is made by identifying or observing all those points through which
the curve passes near t = 1. Mathematically, a tangent is defined as specific line
which touches the curve only at one point.

Perceiving the graph, we comprehend that it passes through the points (0.9,
36.2) and (1.1, 42). Therefore the slope of the tangent at t = 1 is approximated as
follows:

Since this is velocity therefore the unit of measurement is m/s. The rate of
change is estimated by observing the slope.

Derivative

Assume that for the real numbers x and y, ‘y’ is a function of ‘x’, i.e., for each and
every value of x, there will always be a corresponding value of y. We can write this
equation of x and y relationship as,

y = f(x)
If f(x) is considered as the equation, also termed as linear equation, for a

straight line, then there exist two real numbers m and b such that y = mx + b. In the
slope intercept method, the ‘m’ defines the slope and is determined or evaluated
using the following formula:

Here the symbol ∆ (Greek letter Delta) is an abbreviation that represents
‘change in’. Therefore ∆y = m ∆x.
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Fig. 1.4 The Tangent Line at (x, f(x))

Since the general or common function has no line, hence it has no slope. As
per geometric rules, “the derivative of f at the point x = a is the slope of the
tangent line of the function f at the specified point a” as shown in Figure 1.4.

This is frequently denoted or represented as f ′ (a) in Lagrange’s notation

and as in  Leibniz’s notation. Because the derivative is defined as the slope
of the linear approximation towards f at the specified point a, therefore the derivative
in conjunction with the value of f at a basically determines or approximates the
best ‘linear approximation’ or the ‘linearization’ of function f near the specified
point ‘a’.

In the domain of ‘f’ there is derivative for each point ‘a’ which defines a
function for sending every specified point ‘a’ to the derivative of ‘f’ at ‘a’, such as

when f(x) = x2, then at that point the derivative function is  
��
��

= 2� .

Another related significant notion is the ‘differential of a function’. For
the real variables x and y, we can state that the derivative of f at x is the slope of
the tangent line for the required graph of f at x. Additionally, the derivative of ‘f’
will be real number because both the source and the target of function f are one-
dimensional. Now if we take the best linear approximation in a single direction
then we can determine a partial derivative denoted as ∂y/∂x. The total derivative
can be defined as the linearization of f in all directions simultaneously.

Check Your Progress

1. What is differentiation?
2. What is Lagrange’s notation of derivative of a function f(x)?
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1.3 PARAMETRIC DIFFERENTIATION

As already discussed in the preceding section that to find or obtain the derivative
of an expression where one variable is the dependent variable generally named ‘y’
is typically expressed as a function of another independent variable generally named
‘x’, mathematically written as y = ƒ(x).

However this is not always be the situation. Occasionally we come across
characteristic situations where we can not possibly express y in terms of x and
vice versa. Alternatively we can express both the variables x and y in terms of a
third variable named ‘t’ by convention possibly because this variable is frequently
used for representing time. This third variable is termed as parameter.

A function that contains this third variable or parameter is termed as
parametric function and the method of differentiating a parametric function
is defined as the parametric differentiation. Though, to differentiate a parametric
function is slightly more difficult as comparison to differentiate a function which has
only two variables.

A parametric derivative, in calculus, is approximated using a derivative
of a dependent variable ‘y’ with reference to an independent variable ‘x’ specifically
taken in the condition when both the variables typically depend on an third
independent variable ‘t’, normally assumed as ‘time’, i.e., specifically when the
variables x and y are defined through the parametric equations in t.

First Derivative

Consider that x(t) and y(t) are the coordinates of the points of the curve that is
expressed or stated as follows by means of functions of a variable ‘t’:

y = y(t),  x = x(t)
Therefore the first derivative is precisely implied using these parametric

equations is given as,

Here the notation denotes or represents the derivative of x with respect
to t. We can also derive the equation by means of the chain rule for derivatives
as follows:

 

Now when we divide both sides by dx/dt we obtain the equation derived
above.
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As a general rule, all of the derivatives dy/dt, dx/dt and dy/dx are themselves
considered as functions of t and therefore can more explicitly be written as,

Second Derivative

In parametric differentiation, the second derivative that is precisely implied using a
parametric equation is given by the following equations:

This is approximated using the quotient rule for derivatives.
Example 1. Let us take the set of functions in which x(t) = 4t2 and y(t) = 3t.

Differentiating both functions with regard to t gives the equations,

And,

, respectively..

The following equation is derived when we substitute the above into the
formula for the parametric derivative,

Here and are assumed to be functions of t.
Differentiating parametric equations using the chain rule.

Example 2. If x = 2at2 and y = 4at, then find dy/dx.
Solution: We know that,  dy/dx = dy/dt  ×  dt/dx

Here,
         dx/dt = 4at and therefore dt/dx = 1/(4at)
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Also,
         dy/dt = 4a
Hence,
        dy/dx = 4a × 1/4at = 1/t

Finding the Second Derivative

To find the second derivative we proceed using the following equation in the
Example 2.

Therefore, we can obtain the second derivative as follows:
d2y / dx2 = d(1/t) / dt × dt / dx
 = -1 / t2  × 1 / 4at

Derivatives of Parametric Functions

In parametric form, the relationship between the variables x and y is expressed
with the help of following two equations:

Here the variable t is termed as parameter.
For instance, following two functions define the equation of a circle that is

centered at the origin with the radius R, in parametric form. In this situation, the
parameter t fluctuates or varies from 0 to 2π.

To find or obtain an expression for the derivative of a parametrically defined function
let us assume that the functions x = x(t) and y = y(t) can be differentiated in the
interval α < t < β and x′ (t) ≠ 0. Additionally, we can also assume that the function
x = x(t) has an inverse function t = ϕ(x).

According to the inverse function theorem,
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We can consider the original function y(x) as a composite function of the
form,

y(x) = y(t(x))
Its derivative is now given as follows,

Using the above formula we can find or obtain the derivative of a
parametrically defined function where there is no need to express the function y(x)
in explicit form.

Following examples will explain that how we can find or approximate the
derivative of the parametric function.

Example 3. Find the derivative of the parametric function when x = t2 and
y = t3.

Solution: For finding the derivatives of x and y we use the third variable t
or we can find with reference to t as follows:

Therefore,

Example 4. Find the derivative of the parametric function when x = 2t + 1 and
y = 4t − 3.
Solution: Similarly as above for finding the derivatives of x and y we use the third
variable t or we can find with reference to t as follows:

Subsequently,

Example 5. Find the derivative of the parametric function when x = e2t and
y = e3t.
Solution: To find the derivatives of x and y we use the equation of the form,

Therefore, the derivative dy/dx is specified by the following:
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Example 6. Find the derivative of the parametric function when x = 2t2 + t + 1
and y = 8t3 + 3t2 + 2.
Solution: For finding the derivative of the parametric function we differentiate
both the equations with respect to the parameter t as follows:

  

Therefore, the derivative dy/dx is specified by the following:

Example 7. Find the derivative of the parametric function when x = a cos t and
y = b sin t.
Solution: The equations define that an ellipse is centered specifically at the origin
through semiaxes a and b.

For finding the derivative of the parametric function we differentiate the
variables x and y with regard to the parameter t as follows:

      

Consequently, the derivative dy/dx is dependent on the parameter t as shown
below in the equations:

      

In this state, the parameter t varies from −π to π. Though the derivative
dy/dx is infinite at the points t = 0, ±π. 

Consequently, this domain is represented as 0 < |t| < π.
Example 8. Given are the following parametric equations:

         x = cos t     and    y = sin t     for     0 ≤ t ≤ 2π

Plot a graph for this.
Note: Here both x and y are specified in terms of the third variable t.

Solution: To plot a graph we will first plot graphs of cos t and sin t as shown
below in the given Figure 1.
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Fig. 1.5 Graphs of cos t and sin t

Evidently,
For when t = 0, x = cos 0 = 1; y = sin 0 = 0.                                                                               (1)
And when t = π/2 , x = cos π/2 = 0; y = sin π/2 = 1 .                                                               (2)
By this method we find or get the x and y coordinates of large numbers of

points specified by Equations 1 and 2. Refer Table 1 for the values of x and y as
specified by Equations 1 and 2.

Table 1. Values of x and y as Specified by Equation 1

To obtain a graph, we plot the points specified by the x and y coordinates
as given in Table 1. Now we join these points by drawing a smooth curve to get
the perfect graph as shown below in Figure 1.6. The parametric equations specify
a circle which is centered at the origin and is of Radius 1.

Fig. 1.6 Circle Centered at the Origin with Radius 1
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Therefore, x = cos t, y = sin t, for t positioned between 0 and 2π, are
termed as the parametric equations that define a circle having centre (0, 0) and
Radius 1.

Point to Remember

Parametric Differentiation
If,
            x = x(t) and y = y(t)
Then,

         

Provided that, 

Example 9. Find dy/dx for x = cos t and y = sin t.
Solution: For finding dy/dx, differentiate both x and y with regard to the parameter
‘t’ as follows:

    dx/dt = −sin t           dy/dt = cos t
According to the chain rule we get the following equation:

Consequently, by rearranging we obtain,

Provided that dx/dt is not equal to ‘0’.
Therefore, in this condition,

Check Your Progress

3. Define parametric differentiation.
4. If x = 3t and y = 4t, then find dy/dx.
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1.4 LOGARITHMIC DIFFERENTIATION

In calculus, logarithmic differentiation or differentiation by using logarithms
is a specific method to differentiate functions by means of the logarithmic
derivative of a function ‘f’. This method is used in when it is easy to differentiate
the logarithm of a function instead of the function itself.

In addition to the properties of logarithms, specifically the natural logarithm
or the logarithm to the base e, ‘Logarithmic Differentiation’ depends on the
chain rule for transforming the products into sums and divisions into subtractions.

The logarithmic principle is applied in the differentiation of all differentiable
functions provided that the functions are non-zero.

For a function,
                        y = f(x)
Typically the logarithmic differentiation takes place on both sides with the

natural logarithm or the logarithm to the base e, taking the absolute values as
follows:

After implicit differentiation we have the following form:

On the left-hand side multiply by y so that 1/y is eliminated and only dy/dx
is left behind.

This method is very helpful in differentiation because the properties of
logarithms provide possibilities for quickly simplifying complex functions. Following
are the utmost and frequently used logarithm laws:

Logarithmic differentiation thus provides method for differentiating a function.
However, for logarithm of any base the following given properties and methods
are accurate and true, but we will be using only the natural logarithm ( ), i.e.,
base e where e  .

Therefore, the logarithmic differentiation is the method or process of
differentiating functions by first obtaining or finding the logarithms and then
differentiating it. Using this method you can efficiently calculate the derivatives of
power, rational functions and also some irrational functions.
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Let us understand the concept of logarithmic differentiation with the help of
an example.

Let,              y = f(x)
Now taking the natural logarithms of both sides of the equation, we obtain:
ln y = ln f(x)
Subsequently, we apply the chain rule to differentiate the above expression

since y is a function of x.

It is comprehended that the derivative is,

Fundamentally, the derivative of the logarithmic function is termed as
the logarithmic derivative of the initial function y = f(x).

Using the logarithmic differentiation method we can also efficiently compute
the derivatives of power-exponential functions, i.e., functions of the form,

           

Here u(x) and v(x) are the differentiable functions of x.

Properties of Natural Logarithm

1.  .

2.  .

3.  .

4.  .

5.  .

6.  .

Following are some of the common mistakes which should be avoided.

1.  .

2.  .

3.  .
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4.  .

5.  .

The following examples will help you to understand the use of logarithmic
differentiation for obtaining the derivative of the function y(x).
Example 10. Differentiate y = xx.
Solution: In this function, since the variable is raised to a variable power therefore
the differentiation can not be done using the ordinary rules of differentiation. To
obtain a derivative of y = xx, on both sides of this equation we apply the natural
logarithm as follows.

 

.
Now differentiate both the sides of the obtained equation. For differentiation

on the left-hand side is done using the chain rule because here y represents a
function of x while the differentiation on the right-hand side is done using the product
rule. Thus, to differentiate we start with the equation,

On differentiating, we obtain the following equation:

On multiplying both the sides of the above equation by y, we obtain:

Example 11. Differentiate y = x(ex).
Solution: In this function also, since the variable is raised to a variable power
therefore the differentiation can not be done using the ordinary rules of differentiation.
To obtain a derivative of y = x(ex), on both sides of this equation we apply the
natural logarithm as follows.
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Now differentiate both the sides of the obtained equation. For differentiation
on the left-hand side is done using the chain rule because here y represents a
function of x while the differentiation on the right-hand side is done using the product
rule. Thus, to differentiate we start with the equation,

On differentiating, we obtain the following equation:

Now first of all obtain a common denominator and then combine the fractions
on the right-hand side as follows:

Further, in the numerator factor out ex as shown below.

On multiplying both the sides of the above equation by y, we obtain:

On combining the powers of x we get the following resultant equation:
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Example 12. Differentiate 

Solution: In this function also, since the variable is raised to a variable power
therefore the differentiation can not be done using the ordinary rules of differentiation.

To obtain a derivative of , on both sides of this equation we

apply the natural logarithm as follows.

 

Now differentiate both the sides of the obtained equation. For differentiation
on the left-hand side is done using the chain rule because here y represents a
function of x while the differentiation on the right-hand side is done using the product
rule. Thus, to differentiate we start with the equation,

 

On differentiating, we obtain the following equation:

 

Now first of all obtain a common denominator and then combine the fractions
on the right-hand side as follows:
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On multiplying both the sides of the above equation by y, we obtain:

    

On combining the powers of   we get the following resultant equation:

1.5 DIFFERENTIATION OF IMPLICIT
FUNCTIONS

In an implicit function or relation the dependent variable is not inaccessible on
one side of the equation, such as the equation x2 + xy – y2 = 1 denotes or signifies
an implicit relation.

Mathematically, an implicit equation is defined as a relation of the form,
R(x1, . . ., xn) = 0
Here R is stated as a function of several variables, essentially a polynomial.
The unit circle has the implicit equation of the form,

x2 + y2 − 1 = 0
Definition. Therefore, an implicit function is a function that is defined implicitly
by an implicit equation, by associating one of the variables (the value) with the
others (the arguments).

Consequently, for the unit circle an implicit function for y is defined implicitly
by,

x2 + f(x)2 − 1 = 0
The above implicit equation states that f is a function of x only when,

− 1 ≤ x ≤ 1
The values of the function are only non-negative or non-positive.
In the equations when y is not expressed explicitly in terms of x then implicit

function is used. For example,
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y4 + 2x2y2 + 6x2 = 7
In the above equation it is difficult to solve for y for finding dy/dx. To obtain

the derivatives of such form of expressions for finding the rate of change of y as x
changes we apply implicit differentiation method.

Example 13. Find the expression for 

Solution: First we obtain the following expression:

For obtaining the above expression, follow the steps given below.
(i) Finding the derivative with regard to x of y4,

So therefore,

(ii) Finding the derivative with regard to x for,

This simply refers to the ordinary differentiation

(iii) Now we solve as follows.
To the right-hand side of the expression, we drive the following form that

the derivative of zero is zero, i.e.,
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Let us combine the results of sections (i), (ii) and (iii) as follows:

Solving for dy/dx we obtain the following required expression:

Check Your Progress

5. When do we use logarithmic differentiation?
6. What is the value of ln 1?
7. Define implicit function.

1.6 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. Differentiation is the process of finding the derivative, or rate of change, of
a function.

2. f ′(x).
3. A function that contains a parameter is termed as parametric function and

the method of differentiating a parametric function is defined as the parametric
differentiation.

4. Here, dx/dt = 3. Also, dy/dt = 4. Hence,   dy/dx = dy/dt/dx/dt = 4/3.
5. This method is used in when it is easy to differentiate the logarithm of a

function instead of the function itself.
6. In 1 =  0
7. An implicit function is a function that is defined implicitly by an implicit

equation, by associating one of the variables with the others.

1.7 SUMMARY

• Differentiation is the process of finding the derivative, or rate of change, of
a function.

• Derivatives are often used for finding the maxima and minima of a function
and the equations which involve the derivatives are termed as differential
equations.
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• A tangent is defined as specific line which touches the curve only at one
point.

• To find the derivative of an expression where one variable is the dependent
variable generally named ‘y’ is typically expressed as a function of another
independent variable generally named ‘x’, mathematically written as y =
ƒ(x).

· ∆y = m ∆x, where ‘m’ defines the slope.
• The derivative of f at the point x = a is the slope of the tangent line of the

function f at the specified point a. This is frequently denoted as f ′ (a) in

Lagrange’s notation and as 
��
�� |�=� in Leibniz’s notation.

• In the domain of ‘f’ there is derivative for each point ‘a’ which defines a
function for sending every specified point ‘a’ to the derivative of ‘f’ at ‘a’,
such as when f(x) = x2, then at that point the derivative function is

�′ (�) =  
��
��

= 2�. 

• A function that contains a parameter is termed as parametric function and
the method of differentiating a parametric function is defined as the parametric
differentiation.

• A parametric derivative is approximated using a derivative of a dependent
variable ‘y’ with reference to an independent variable ‘x’ specifically taken
in the condition when both the variables typically depend on an third
independent variable ‘t’, normally assumed as ‘time’, i.e., specifically when
the variables x and y are defined through the parametric equations in t.

• Parametric differentiation: if x = x(t) and y = y(t) then dy/dx = (dy/dt)/(dx/
dt) where dx/dt is not equal to zero.

• Logarithmic differentiation a specific method to differentiate functions by
means of the logarithmic derivative of a function ‘f’.

• The logarithmic principle is applied in the differentiation of all differentiable
functions provided that the functions are non-zero.

• An implicit function is a function that is defined implicitly by an implicit
equation, by associating one of the variables (the value) with the others (the
arguments).

1.8 KEY WORDS

• Derivative: Derivative, in mathematics, the rate of change of a function
with respect to a variable.

• Maxima and minima: In mathematical analysis, the maxima and minima
of a function, known collectively as extrema, are the largest and smallest
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value of the function, either within a given range or on the entire domain of
a function.

• Slope: The slope of a line is the ratio of the amount that y increases as x
increases some amount. Slope tells you how steep a line is, or how much y
increases as x increases. The slope is constant (the same) anywhere on the
line.

• Logarithm: a quantity representing the power to which a fixed number
(the base) must be raised to produce a given number.

 1.9 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short Answer Questions

1. Write two applications of differentiation.
2. Define the terms rate of change and slope.
3. Why do we need a parameter in differentiation?
4. Find the derivative of the parametric function when x = 9t2 and y = 5t3.

Long Answer Questions

1. Given are the following parametric equations:
         x = cos t     and    y = sin t     for     0 ≤ t ≤ 2π. Plot a graph for this.

2. Explain differentiation by using logarithms.
3. Discuss properties of natural logarithms.

4. Differentiate  � = 5�(� 2� ).

5. Find the expression for 
��
��  if �3 +  �3 − 2�2 − 27 = 0 

1.10 FURTHER READINGS
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2.7 Key Words
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2.9 Further Readings

2.0 INTRODUCTION

In the previous unit, you have learned the differentiation and different methods to
differentiate a function. This unit introduces you to the concept of successive
differentiation. In successive differentiation, a function can be differentiated more
than once. Further in this unit, you will see nth derivative of some standard functions.
In the end, some problems are discussed using higher order derivatives. The
derivatives other than the first derivative are called the higher order derivatives.

2.1 OBJECTIVES

After going through this unit, you will be able to:
• Understand the concept of successive differentiation
• Know the nth derivative of some standard functions
• Solve problems using higher order derivatives

2.2 SUCCESSIVE DIFFERENTIATION -
INTRODUCTION 

The successive differentiation refers to the method of finding the derivatives
in succession or more precisely in sequence.

In successive differentiation, a function can be differentiated more than once
as explained here.
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As a general rule, the differential coefficient of a function f(x) is itself a
function of x specified as derived function of x or the first derivative of the function
f(x). The first derivative of the function f(x) is symbolized or represented as f ′(x)
which indicates that function f(x) is differentiated first time and is defined as the
first derivative. This first derivative f ′(x) is then differentiated for obtaining the
second derivative of the function f(x) and is symbolized or represented as f ′′ (x)
specifying that the function f(x) is differentiated twice. When the derived function
f ′(x) is differentiated second time then we can differentiate the obtained second
derivative  f ′′ (x) third time to provide a function of x termed as third derivative.

This second derivative f ′′ (x) is then differentiated for obtaining the third
derivative of the function f(x) and is symbolized or represented as f ′′′ (x) specifying
that the function f(x) is differentiated three times. This method of obtaining a derived
function can be repeated indefinitely and the derived function thus obtained is
symbolized or represented as f (n − 2) (x).

The derived function f (n − 2) (x) is differentiated then we obtain the (n − 1)th
derivative f (n − 1) x which can be further differentiated to provide a function of x
termed as nth derivative and is represented or symbolized as f n (x) specifying that
f(x) is differentiated n-times.

This method of differentiation of a function f(x) is successively repeated
more than once to find derivatives sequentially from a given function f(x) is termed
as successive differentiation.

Therefore, if y is considered as a function of x which can be differentiated
with regard to x, then the obtained derivative dy/dx is termed as the derivative of
first order. Moreover if this first derivative dy/dx is used as a differentiable function
then we can further differentiate it with reference to x. This second derivative of y
with reference to x is represented or symbolized as d2y/dx2.

Additionally, if the second derivative d2y/dx2 is further differentiated then
we obtain the third derivative of y which is represented or symbolized as d3y/dx3.
In the same way, the nth derivative of y is represented or symbolized as dny/dxn.

Mathematically, all the obtained derivatives of y with respect to x are termed
as successive derivatives and the method is specified as successive
differentiation.

The successive derivatives are used in approximating,
1. Maxima and Minima of Functions
2. Increasing and Decreasing Functions
3. Determining the Points of Inflexion while Curve Tracing
4. Concavity and Convexity of Curves at Specific Points
Hence, for y = f(x) if there exist its successive derivatives upto the nth

order then we have the following forms of derivatives,
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These derivatives are termed as successive derivatives or more specifically
differential coefficients of y with reference to x. Additionally, the following forms
are also used to represent or symbolize these successive derivatives or differential
coefficients:

Therefore, for y = f(x) the derivative f (n) (x) can also be represented as
dny/dxn or Dny or y(n) or yn, and also as,

Derivation of Derivative Equation

If y = f (x) is considered as the differentiable function of x, then we have the
following form termed as the first differential coefficient of y with respect to x:

Now, on differentiating both side with respect to x,

Consider that if, is denoted by,,

                     

Then,

                    

In the same way, is denoted by,,
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To be precise, , and so on.

Consequently, the following expressions are termed as first, second, third,
……., nth differential coefficient of ‘y’.

             

Generally these functions can also be written as follows:

             
Or,
             
And also,
              

(Where D = d/dx, or capital D notation and n being the positive integer.)

         

Additionally, for y = f(x), the nth order derivative at x = a is normally
denoted or represented by the form,

                  

Or, (yn) x = a      or      (yn) x = a        or         f n (a)

Example 1. Successively differentiate y = x6 up to fourth derivative.
Solution: Given is, y = x6.

Now we will successively differentiate y = x6 as follows.
The first derivative will be,
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The second derivative will be,

The third derivative will be,

Similarly, the fourth derivative will be,

Example 2. Successively differentiate y = sin x up to nth derivative.
Solution: Given is, y = sin x

Therefore,
y1 = cos x

    

y2 = − sin x

     

y3 = − cos x

   

Similarly, we can obtain the values for y4 = sin x, y5 = cos x, and so on. And
the notation for nth derivative will be,
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Check Your Progress

1. What do you understand by successive differentiation?
2. How the third derivative of a function f(x) is donated?
3. What is the first derivative of sin x?

2.3 nTH DERIVATIVE OR DIFFERENTIAL
COEFFICIENT OF SOME STANDARD
FUNCTIONS

Following are some standard functions of the nth derivative or differential coefficient.

(i) Differential Coefficient of xm

For, y = xm

We have,
y1 = mxm−1

y2 = m(m − 1) xm−2

y3 = m(m − 1) (m − 2) xm−3, . . . ., and so on.
And, Yn = m(m − 1) (m − 2) (m − 3) (m − 4) . . . . . . . . . (m − n + 1) xm−n

Further, if m is a positive integer then,
Yn = 1.2.3. . . . . . . . . . . . m = m!

Therefore,
Dn (xm) = m(m − 1) (m − 2) (m − 3) (m − 4) . . . . . . . . . (m − n + 1) xm−n

(ii) Differential Coefficient of (ax + b)m

For, y = (ax + b)m

We have,
y1 = am(ax + b)m−1

y2 = a2m(m − 1) (ax + b) xm−2

y3 = a3m(m − 1) (m − 2) (ax + b) xm−3, . . . ., and so on.
And,
         yn = anm(m − 1) (m − 2) (m − 3) (m − 4) . . . . . . . . . . (m − n + 1)

(ax + b) xm−n

Therefore,
        
Or,
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For m being the negative integer, take m = −p, here p is defined as the
positive integer. Accordingly we can have,

    

                        

Remember that,
(a) For m = n, we have,
      Dn

  (ax + b)−p = an !
(b) For m = − 1, we have,

    

(iii) Differential Coefficient of (ax + b)
For y = log (ax + b)
We have,

, and so on.

And typically,

       

Therefore,
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Remember that,

       

(iv) Differential Coefficient of abx

For y = abx

We have,

, and so on.

And also,

          

Therefore,

         

(v) Differential Coefficient of eax

For y = eax

We have,
y1 = aeax

y2 = a2eax

y3 = a3eax

y4 = a4eax

y5 = a5eax, and so on.
And also,
yn = aneax

Therefore,
Dn eax = aneax

(vi) Differential Coefficient of sin (ax + b)
For y = sin (ax + b)
We have,
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, . . . . ., and so on.

And also,

yn = 

Therefore,

          

Remember that,

(vii) Differential Coefficient of cos (ax + b)
For y = cos (ax + b)
We have,

, . . . . , and so on.

And also,

Therefore,

Remember that,
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(viii) Differential Coefficient of eax sin (bx + c) and eax cos (bx + c)
For y = eax sin (bx + c)
We have,

        
Now when we put,    a = r cosφ    and    b = r sinφ
Then we have,
y1 = reax sin (bx + c + φ)

In which,   r2 = a2 + b2      and      φ = 

In the same way,
y2 = r2eax sin (bx + c + 2φ), . . . . . . . ., and so on.
Therefore,

Dn eax sin (bx + c) = rneax sin (bx + c + nφ)
In which,

    and    

In the same way,
Dn eax cos (bx + c) = rneax cos (bx + c + nφ)
In which,

   and    

Example 3. Evaluate the nth derivative of eax sin bx cos cx.
Solution: The nth derivative of eax sin bx cos cx is evaluated as follows.

Consider that,

y = eax sin bx cos cx = 
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And also,

       

Therefore,

        

Example 4. For y = eax, evaluate 

Solution: The  is evaluated as follows.

We know that,

Further,

Therefore,

Example 5. If y = sin x, then find 

Solution: We can find  as follows.

Since,

And,
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,

 . . . . . . . . . . . , and so on.
Therefore,

2.4 PROBLEMS USING HIGHER ORDER
DERIVATIVES

Together the second, third, fourth, . . . . . ., etc., derivatives are termed as the
higher order derivatives.

Since the derivative of a function y = f (x) is a function itself and its derivative
is represented as y′  = f ′ (x). The derivative of f ′ (x) is normally termed as
the second derivative of f(x) and is denoted as  f ′′(x) or f 2(x). The successive
differentiation method is continued for further finding the third, fourth, fifth, . . . ,
and so on, the successive derivatives of f(x), termed as the higher order
derivatives of f(x). The ‘prime’ notation used for derivatives may sometimes
create confusion hence the numerical notation f(n)(x) = y(n) is preferably used for
denoting the nth derivative of f(x).

Take the following function into consideration:

On differentiating this function, we have,

On further differentiating this function, we have the derivative,

This derivative is termed as the second derivative while f ′(x) is termed as
the first derivative.

On further differentiating this function we obtain the third derivative,

Similarly, on differentiating this function we obtain the fourth derivative,

In the above notation, prime is not used, instead numerical notation is used
because adding too many primes will make the notation cumbersome.
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Example 5. Evaluate the first, second and third derivatives of y = sin2 x.
Solution: Given is y = sin2 x

Therefore, we obtain the first, second and third derivatives as follows.

Example 6. If x2 + y4 = 10, then find y′′.
Solution: Given is x2 + y4 = 10. We can find y′′ or second derivative as follows.

We have to find the first derivative,

Therefore, the first derivative is,

Now we obtain the second derivative y′′ as follows:

Substituting the first derivative into the second derivative equation, we find
y′′ as follows,
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Example 7. For f(x) = (3 − 5x)5 find f ′′′(x).
Solution: Given is,

 f(x) = (3 − 5x)5

Now we will find f ′′′(x) by obtaining the first, second and third order
derivatives as follows.

f ′(x) = 5 (3 − 5x)4 (− 5) = − 25 (3 − 5x)4

f ′′ (x) = − 25 (4) (3 − 5x)3 (− 5) = 500 (3 − 5x)3

f ′′′ (x) = 500 (3) (3 − 5x)2 (− 5) = − 7500 (3 − 5x)2

Example 8. Find the first four derivatives for y = cos x.
Solution: Given is that y = cos x. We will find the first four derivatives as follows.

First derivative y ′ = − sin x
Second derivative y ′′ = − cos x
Third derivative y ′′′ = sin x
Fourth derivative y ′′′′ = cos x

Check Your Progress

4. What is the differential coefficient of xm?
5. What are higher order derivatives?

2.5 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. The successive differentiation refers to the method of finding the derivatives
in succession. In successive differentiation, a function can be differentiated
more than once.

2. f ′′′ (x).
3. cos x.
4. Dn (xm) = m(m − 1) (m − 2) (m − 3) (m − 4) . . . . . . . . . (m − n + 1) xm−n

5. Together the second, third, fourth, . . . . . ., etc., derivatives are termed as
the higher order derivatives.

2.6 SUMMARY

• The successive differentiation refers to the method of finding the derivatives
in succession. In successive differentiation, a function can be differentiated
more than once.
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• If y is considered as a function of x which can be differentiated with regard
to x, then dy/dx is first derivative, d2y/dx2 is second derivative, d3y/dx3 is
third derivative and dny/dxn is nth derivative.

• All the obtained derivatives of y with respect to x are termed as successive
derivatives and the method is specified as successive differentiation.

• Differential Coefficient of xm, Dn (xm) = m(m − 1) (m − 2) (m − 3) (m − 4)
. . . . . . . . . (m − n + 1) xm−n

• Differential Coefficient of (ax + b)m,

•  Differential Coefficient of (ax + b),

• Differential Coefficient of abx

• Differential Coefficient of eax

Dn eax = aneax

• Differential Coefficient of sin (ax + b),

• Differential Coefficient of cos (ax + b)

2.7 KEY WORDS

• Derivative: Derivative, in mathematics, the rate of change of a function
with respect to a variable.

• Coefficient: a numerical or constant quantity placed before and multiplying
the variable in an algebraic expression (e.g. 4 in 4x y).

• Differentiation: Differentiation, in mathematics, process of finding the
derivative, or rate of change, of a function.
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2.8 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short Answer Questions

1. Write a short note on successive differentiation.
2. What is the importance of successive derivatives?
3. Explain nth order derivative for y = f(x).
4. Find the first four derivatives for y = sin x.

Long Answer Questions

1. Evaluate the first, second and third derivatives of y = cos2 x.

2. If y = cos x then find .

3. If x2 - y4 = 10, then find y′′′.
4. For f(x) = (5x + x)5 find f ′′′(x).
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3.0 INTRODUCTION

You are already aware of the concept of differentiation and successive
differentiation. In this unit, you will learn the concept of partial differentiation and
its applications. In mathematics, a partial derivative of a function of several variables
is its derivative with respect to one of those variables, with the others held constant
(as opposed to the total derivative, in which all variables are allowed to vary).
Partial derivatives are used in vector calculus and differential geometry. Partial
derivatives play a prominent role in economics, in which most functions describing
economic behaviour proposes that the behaviour depends on more than one
variable.

You will also learn about the homogeneous functions and partial derivatives
of homogeneous functions. A homogeneous function is one with multiplicative scaling
behaviour: if all its arguments are multiplied by a factor, then its value is multiplied
by some power of this factor. Further this unit discusses Euler’s theorem, which is
extremely useful in differential calculus. In the end, this unit explains the properties
of maxima and minima of functions of one variable and two variables.
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3.1 OBJECTIVES

After going through this unit, you will be able to:
• Understand the concept of partial differentiation
• Know about homogeneous function and results based on it
• Discuss Euler’s theorem and its verification
• Determine the maxima and minima of functions of one variable and two

variable

3.2 PARTIAL DIFFERENTIATION 

Assume that for a function of two variables, ƒ(x, y), basically the derivative of f is
defined simply with respect to x while y is considered as a constant. This derivative
is termed as the ”partial derivative of ƒ with respect to x” and is represented
either in terms of ∂f / ∂x or ƒx. The ‘∂’symbol is used for denoting partial derivative.

Likewise, we can also define the derivative of ƒ simply with respect to y while
x is considered as a constant. This derivative is termed as the ”partial derivative
of ƒ with respect to y” and is represented either in terms of ∂f / ∂y or ƒy.
Definition. The partial derivative of a function f(x, y, . . . .) with reference to
the variable x is represented using the following specified notations:

f ′x,    fx,    ∂x f,    Dx f,    D1 f,   ∂f / ∂x,   or   

In addition, for a function z = f(x, y, . . . .), the partial derivative of z with
regard to x is represented by ∂z/ ∂x.

Generally, the arguments of a partial derivative is same as the original function,
however, occasionally its functional dependency is explicitly denoted or represented
by the notation as shown below.

Definition. Mathematically, a partial derivative of a function of several
variables is its derivative with respect to one of those variables, while the remaining
others are considered as constant. Partial derivatives has its applications in vector
calculus, differential geometry, etc.
Definition. The function f can be interpreted or deduced as a family of functions
of one variable which is indexed by the other variables as,

f(x, y) = fy(x) = x2 + xy + y2
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Definition. A differential equation which expresses one or more measures in terms
of partial derivatives is called a partial differential equation.
(1) Partial Derivative, the Function of One Variable (x):

f (x) = x2

      Its derivative by means of the Power Rule is:
f ′(x) = 2x

      In calculus, the Power Rule is frequently used to find the derivative.
      As per the Power Rule, the derivative of xn is nx(n − 1)

Example 1. Find the derivative of x2 using the Power Rule.
Solution: To find the derivative of x2 by means of Power Rule using n = 2, follow
the given method.

The derivative for,
 x2 = 2x(2 − 1)

     = 2x 1

     = 2x
Thus, the derivative of x2 is 2x.

(2) Partial Derivative, the Function of Two Variables (x and y):
f(x, y) = x2 + y3

(i) For finding the partial derivative of the above expression of two variables
with regard to x, we consider y as constant and evaluate the derivative as follows:

f ′x = 2x + 0 = 2x
Interpretation: Let us understand the process.

(a) The derivative of x2 with regard to x is defined as 2x.
(b) Here, since y is considered as a constant, hence y3 will also be a constant

and consequently the derivative of a constant will be 0 (zero).
(ii) For finding the partial derivative of the above expression of two variables

with regard to y, we consider x as constant and evaluate the derivative as follows:
f ′y = 0 + 3y = 3y2

Interpretation: Let us understand the process.
(a) The derivative of y3 with regard to y is defined as 3y2.
(b) Here, since x is considered as a constant, hence x2 will also be a constant

and consequently the derivative of a constant will be 0 (zero).

How a Variable Constant is Hold as a Constant in Case of Two Variables

Let us understand the concept with the help of the following example of cylinder
where we will consider the variables r (radius of cylinder) and h (height of cylinder)
as a contant, each at a time (Refer Figure 3.1).
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Fig. 3.1 Radius and Height of a Cylinder

We know that the volume of a cylinder is evaluated by,
 V = π r2 h
Now in variable form,

V = f(r, h)
Hence,

f(r, h) = π r2 h
For defining the partial derivative with reference to r we consider h as a

constant, as variable r changes (Refer Figure 3.2):
f ′r = π (2r) h = 2 π r h

Fig. 3.2 Radius ‘r’ Changes

Therefore, the derivative of r2 with reference to r is 2r, where π and h are
considered as constants.

Thus it states that, “in this case the radius r only changes by the smallest
amount and accordingly the volume of the cylinder changes by 2 π r h”. The
change in the radius is very less as shown in the Figure 3.2 and it seems as if it is a
membrane having a circle circumference (2 π r) and a height h.



Partial Differentiation

NOTES

Self-Instructional
44 Material

For defining the partial derivative with reference to h we consider r as a
constant, (Refer Figure 3.3):

f ′h = π r2 (1) = πr2

Fig. 3.3 Height ‘h’ Changes

Therefore, the derivative of h with reference to h is 1, and where π and r2

are considered as constants.
Thus it states that, “In this case the height h only changes by the smallest

amount and accordingly the volume of the cylinder changes by r2”. The change in
the height is very less as shown in the Figure 3.3 and it seems as if a thin disk is
added on the top having a circle area of πr2.

Notations

(i) The partial derivative of ‘f’ with respect to ‘x’ is expressed as,
fx or ∂f / ∂x

(ii) The partial derivative of ‘f’ with respect to ‘y’ is expressed as,
fy or ∂f / ∂y

(iii) The analogous notation to the most familiarized form is expressed as,
df / dx      or     f ′

(iv) For z = f(x, y).
 We can also write the partial derivative fx (x, y) as,

In the same way, we can write the partial derivative fy (x, y) as,
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(v) We can evaluate the partial derivative fy (x, y) at the point (x0, y0) and
express as follows:

Or,

Try finding the equivalent expression for fy (x0, y0).
We have previously discussed that for a function of one variable f(x),

characteristically the derivative f ′(x) denotes the rate of change of the function
when x changes. This is significant interpretation of derivatives. Let us understand
the concept with the help of Example 2.
Example 2. Consider the function f(x, y) = 2x2y3 and then determine the rate of
change by which the function is changing at the specified point (a, b),

(i) When y is constant and x is a varying variable.
(ii)  When x is constant and y is a varying variable.

Solution: To determine the rate of change by which the function f(x, y) = 2x2y3 is
changing at the specified point (a, b), let us first consider the case when y is
constant and x is a varying.

Hence, we have y = b, because y is a constant.
Therefore, then there be a function of the form which will include only ‘x’

and can be defined as follows:
g(x)  =  f(x, b)  =  2x2b3

At this time, this function has only one variable and for determining the rate
of change we take, g(x) at x = a.

Alternatively, we evaluate g′(a), the function of one or single variable.
Accordingly the rate of change of the function at (a, b), when x is varying

and y is considered as a constant, is evaluated as follows:
g′(a) = 4ab3

The notation g′(a) is termed as the partial derivative of f(x, y) with
reference to x at (a, b) and is represented as follows.

fx (a, b) = 4ab3

Again, let us now consider the case where the variable y is varying and x is
a constant. Similarly as we can derive the equation as we have derived in the case
when the variable x is varying and y is a constant.

Therefore, when x is a constant then it is constant at x = a.
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Therefore, then there be a function of the form which will include only ‘y’
and can be defined as follows:

h(y)   =   f(a, y)  =  2a2y3

⇒ h′(b)  =  6a2b2

The notation h′(b) is termed as the partial derivative of f(x, y) with
reference to y at (a, b) and is represented as follows.

fy (a, b) = 6a2b2

The two partial derivatives that we have derived in this Example 2 are
also occasionally termed as the first order partial derivatives.

Generally, for partial derivatives the notation (a, b) is not always used, instead
for partial derivatives we use the standard notation (x, y). Hence, the partial
derivatives of Example 2 can be written as follows using the standard notation
(x, y):

 fx (x, y) = 4xy3      and       fy (x, y) = 6x2y2

Basically, to evaluate  fx (x, y) we consider ‘y’ as constant for differentiating
‘x’ and similarly to evaluate  fy (x, y) we consider ‘x’ as constant for differentiating
‘y’.

Using the limit definition we can write the above two partial derivatives in
limit form as follows:

Following are some precise and probable alternate notations to evaluate
partial derivatives.

For the function z = f(x, y) we have the following equivalent notations:

The following fractional notations of partial differentiation specify that how
the partial derivative is different from the ordinary derivative with reference to
single variable calculus.
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In the following examples, all the remaining variables are considered as a
constant value and then we differentiate the derivative taking it as a function of
single variable.
Example 3. For the following given functions, find all the first order partial
derivatives.

(i)

(ii)  

Solution: The first order partial derivative is evaluated as follows.

 (i) 

We first evaluate the partial derivative of the function

 with regard to x considering y as a constant.
Therefore, the partial derivative with regard to ‘x’ is,

 fx (x, y) = 4x3

In this case, the second and the third terms differentiate to ‘0’ (zero). Since
as per the standard rule of differentiation, the term that is considered as a constant
differentiates to zero. Now when we differentiate with respect to ‘x’ and consider
‘y’ as a constant, then all the terms with ‘y’ will be considered as constants and
therefore will be differentiated to ‘0’ (zero).

Accordingly, when we differentiate with respect to ‘y’ and consider ‘x’ as a
constant, then the term which includes ‘x’ will be considered as constants and
therefore will be differentiated to ‘0’ (zero). Following partial derivative is evaluated
with regard to ‘y’:

Therefore, the partial derivative with regard to x is,      fx (x, y) = 4x3

And the partial derivative with regard to ‘y’ is, 

(ii)  

We evaluate the derivatives with reference to ‘x’ and ‘y’ of the given function

when ‘z’ is considered as a constant. On the right-

hand side, the ‘z’ in the denominator is a constant.
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The derivatives for x and y are as follows,

Additionally, to differentiate ‘x’ and ‘y’ with regard to ‘z’, the derivative is,
Example 4. Find dy/dx for 3y4 + x7 = 5x.
Solution: To find dy/dx for 3y4 + x7 = 5x we first consider y as a function of x, or
we can say that y = y(x).

When a term including y is differentiated with regard to x then dy/dx is
added to that term as illustrated below.

On either side we differentiate with regard to x as follows:

Solving for dy/dx,

Now we will discuss about the second partial derivative of ‘f’. It is
represented in the following four notations.

Notations

(i) Differentiate ‘f’ two times with regard to ‘x’, i.e., we first differentiate ‘f’
with reference to ‘x’ and then again differentiate the result with reference to
‘x’ that is obtained after the first differentiation.
Thus, ∂2f / ∂x2 or fxx

(ii) Differentiate ‘f’ two times with regard to ‘y’, i.e., we first differentiate ‘f’
with reference to ‘y’ and then again differentiate the result with reference to
‘y’ that is obtained after the first differentiation.
Thus, ∂2f / ∂y2 or fyy

Mixed Partials

(iii) We first differentiate ‘f’ with reference to ‘x’ and then again differentiate the
result with reference to ‘y’ that is obtained after the first differentiation.
Thus, ∂2f / ∂y ∂x or fxy
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(iv) We first differentiate ‘f’ with reference to ‘y’ and then again differentiate the
result with reference to ‘x’ that is obtained after the first differentiation.
Thus, ∂2f / ∂x ∂y or fyx

Example 5. Given is f(x, y) = 3x2y + 5x – 2y2 + 1, then find the partial derivatives
fx, fy, fxx, fyy, fxy and fyx.
Solution: We evaluate the partial derivatives in the following way.

We first differentiate f with regard to x when y is considered as a constant.
This will yield,

fx  =  6xy + 5
Next, we first differentiate f with regard to y when x is considered as a

constant. This will yield,
fy  =  3x2 – 4y

The fxx is considered as the second partial derivative of fx, i.e., the partial
derivative of fx with regard to x.

This will yield,

The fyy is considered as the second partial derivative of fy, i.e., the partial
derivative of fy with regard to y.

This will yield,

The fxy is considered as the mixed second partial derivative of fx with regard
to y, i.e., the partial derivative of fx with regard to y.

This will yield,

The fyx is considered as the mixed second partial derivative of fy with regard
to x, i.e., the partial derivative of fy with regard to x.

This will yield,

Consequently, see the result in case of the mixed second partial derivatives,
fxy and fyx, both are similar as both the result yield ‘6x’, i.e.,

fxy  =  fyx
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Example 6. Given is z = 4x2 – 8xy4 + 7y5 – 3. Find all the partial derivaties of first
order and second order.
Solution: The partial derivaties of first order and second order are evaluated as
follows.

Check Your Progress

1. What is a partial differential equation?
2. What is power rule?
3. Find the derivative of 5x3 using the power rule.

3.3 HOMOGENEOUS FUNCTIONS

A homogeneous function of two variables ‘x’ and ‘y’ is stated as a real-valued
function which satisfies and fulfills the condition,

f (αx, αy)  =  αk f(x, y)
for specific constant ‘k’ and all real numbers ‘α’. The constant k is termed

as the degree of homogeneity.
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Definition. A function f (x, y) is said to be a homogeneous function of degree
‘n’, if,

Where ‘n’ is a real number.
Definition. If ‘f’ be a function of ‘n’ variables defined on a set ‘S’ for which (tx1,
. . . ., txn) ∈ S whenever t > 0 and (x1, . . . ., xn) ∈ S. Then ‘f’ is termed as the
homogeneous function of degree ‘k’ if,

f (tx1, . . . ., txn) = tkf (x1, . . . ., xn) for all (x1, . . . ., xn) ∈ S and t > 0
Since the definition includes or defines the relationship or association between

the specified value of the function at (x1, . . . ., xn) and its precise values at the
points (tx1, . . . ., txn) in which ‘t’ can be some positive number. Remember that
this is restricted to all those particular functions where (tx1, . . . ., txn) is every time
evaluated in the domain when t > 0 and (x1, . . . ., xn) exists in the domain.

Certain specific domains which possess this property includes the set of all
real numbers, the set of positive real numbers, the set of non-negative real
numbers, the set of all n-tuples (x1, . . . ., xn) of real numbers, the set of n-
tuples of positive real numbers and the set of n-tuples of non-negative real
numbers.

A function is said to be ‘homogeneous of degree k’ if its every single
argument is multiplied with some number t > 0, then consequently the value of the
function too is multiplied with tk. For instance, a function is considered as
‘homogeneous of degree 1’ when its all or whole arguments are multiplied with
some number t > 0, and accordingly the value of the function too is multiplied with
the identical or similar number t.

Definition. A function of two variables ‘x’ and ‘y’ is of the form,
 f(x, y) = a0xn + a1xn–1 y + …. + an–1 xyn–1 + anyn

Here each term is of degree ‘n’ and is termed as the homogeneous
function or when it is represented or expressed in the form,

yng(x/y) or xng(y/x)
Then, for example,
f(x, y) = x2 + y2 / x + y
This is termed as the homogeneous function of ‘degree 1’.

3.3.1 Can the Sum of Two Homogeneous Functions Be Essentially
Homogeneous?

Absolutely not, the sum of two homogeneous functions cannot be essentially
homogeneous.
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Let us prove it with the help of the following example.
Consider that h(x) = 1 + x.
Where the constant function f(x) = 1 is defined as the homogeneous of

degree 0 while the function g(x) = x is defined as the homogeneous of degree 1.
However, h is by no means homogeneous of any degree.
If h is considered as or exists as homogeneous of degree k, then for all t

and all x there will be 1 + tx = tk (1 + x), which specifically implies that 1 + 2x =
2k (1 + x) (for t = 2), which sequentially implies that 1 = 2k (for x = 0) and
3 = 2(2k), which are varying or inconsistent.
Example 7. Check the following given functions and determine whether each is
homogeneous or not. If homogeneous then of what degree?

(i) 3x + 4y
(ii) 3x + 4y – 2
(iii) 2x2 + xy
(iv) x2 + x3

Solution: The given functions are determined for homogeneous as follows.
(i) 3x + 4y

The function 3x + 4y is Homogeneous of Degree 1, because,
3(tx) + 4(ty) = t(3x + 4y)

(ii) 3x + 4y – 2
This function is ‘Not’ Homogeneous.

Assume that for all t and all (x, y) there exists certain specific value of k
such that,

3(tx) + 4(ty) – 2 = tk (3x + 4y – 2)
Then precisely, for all (x, y) when t = 2,
6x + 8y – 2 = 2k (3x + 4y – 2)
Therefore, taking (x, y) = (1, 0) we have,
6 – 2 = 2k (3 – 2) or 2k = 4 ….(1)
And subsequently, taking (x, y) = (0, 1) we have,
8 – 2 = 2k (4 – 2) or 2k = 3  ….(2)
The two conditions that outcome in Equations (1) and (2) are inconsistent

or varying, therefore the function 3x + 4y – 2 is not at all homogeneous of any
degree.

(iii) 2x2 + xy
The function 2x2 + xy is Homogeneous of Degree 2, because,
2 (tx)2 + (tx)(ty) = t2 (2x2 + xy)
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(iv) x2 + x3

This function is ‘Not’ Homogeneous.
Assume that for all t and all x there exists certain specific value of k such

that,
(tx)2 + (tx)3 = tk (x2 + x3)
Then precisely, for all x when t = 2,
4x2 + 8x3 = 2k (x2 + x3)
Therefore, taking x = 1 we have,
6 = 2k ….(3)
And subsequently, taking x = 2 we have,
20/3 = 2k ….(4)
The two conditions that outcome in Equations (3) and (4) are inconsistent

or varying, therefore the function x2 + x3 is not at all homogeneous of any degree.

3.3.2 Partial Derivatives of Homogeneous Functions

The partial derivative of homogeneous functions can be explained with the help of
the following proposition or theorem.
Theorem. Considering that ‘f’ be a differentiable function of ‘n’ variables that is
specifically homogeneous of degree ‘k’, then subsequently each of its partial
derivatives f ′i for (i = 1, . . . . , n) is Homogeneous of Degree ‘k – 1’.
Proof.
The proof of the theorem comprises the homogeneity of ‘f’ such that, for all (x1, .
. . . ., xn) and for all t > 0.

 f (tx1, . . . ., txn) = tkf (x1, . . . ., xn)
Differentiating both sides with regard to xi, i.e., the left-hand side and the

right-hand side of this equation we have,
tf ′i (tx1, . . . ., txn) = tkf ′i (x1, . . . ., xn)
Now both the sides of the equation are divided by ‘t’ and we have,

f ′i (tx1, . . . ., txn) = tk – 1f ′i (x1, . . . ., xn)
Hence, proved that f ′i is homogeneous of degree ‘k – 1’.

3.3.3 Euler’s Theorem for Homogeneous Functions

The theory that a homogeneous function of certain specific degree exists was first
discovered by Leonhard Euler.
Definition. A function f(x, y) is a homogeneous function of ‘x’ and ‘y’ of degree
‘n’ if,

 f(tx, ty) = tn f(x, y) for t > 0
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Euler’s Theorem for Homogeneous 1. If ‘z’ is a homogeneous function of ‘x’
and ‘y’ of degree ‘n’ and first order partial derivative of ‘z’ exists, then,

xzy + yzx = nz
Consider that f(x, y) is a homogeneous function of ‘x’ and ‘y’ of order or

degree ‘n’ so as to,
f(tx, ty) = tn f(x, y)

Now define x′≡ xt and y′≡ yt , such that,

ntn – 1 f(x, y) =   

         =   

         =   

Taking t = 1, we have,

Generalizing this to an arbitrary number of variables, we have,

Definition. The function ‘F: ℝ n → ℝ’ ’ is defined as homogeneous of Degree ‘k’
when for all ‘λ’,

F (λx)  =  λkF (x)
Remember that the homogeneity of ‘Degree 1’ is weaker as compared to

linearity. All the linear functions are considered as homogeneous of ‘Degree 1’
however not conversely, such as the function f(x, y) is defined as homogeneous of
degree 1 though not linear.
Euler’s Theorem for Homogeneous 2. If ‘F: ℝ n → ℝ’ ’ is differentiable at ‘x’
and homogeneous of Degree ‘k’, then

∇ F (x) ∙ x = kF (x) 

Proof. Let ‘x’ is fixed. Now consider that the function,
H (λ) = F ° G (λ)

Here G : ℝ → ℝ n , such that,
G (λ) = λx
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According to the Chain Rule,
DH (λ) = DF (G(λ)) DG(λ)
Taking λ = 1, when this equation is evaluated, then we have,

DH (1) = ∇ F(x) . x …(5)
Alternatively, we can define that as per the homogeneity,

  H (λ) = λkx
Now when we differentiate the right-hand side of the equation then it will

yield,
DH (λ) = kλk – 1 F (λ x)

Taking λ = 1, when this equation is evaluated, then we have,
DH (1) = kF (x) …(6)

When we combine Equations (5) and (6) then it will yield the theorem, i.e.,
∇F(x) . x = kF (x)

Chain Rule

In calculus, the chain rule formula is precisely used to compute the derivatives of
two or more functions. Specifically, for the functions f and g, the chain rule states
that the derivatives f o g, the function that defines x to f (g(x)) as the derivatives of
f and g, and the product of functions as shown below.

(f o g)′ = (f ′o g) . g′
Equivalently, this can be stated using variables. Consider that for all ‘x’,

F =  f ′ ° g
Or, F(x) = f (g(x))
This can also be written as,

F ′(x) = f ′(g(x)) g(x)
In Leibniz Notation, the Chain Rule can be written in the following form.

If ‘z’ is considered as a vaiable that depends of variable ‘y’, and where variable
‘y’ is in turn dependent on variable ‘x’ such that both ‘y’ and ‘z’ are consequently
be the dependent variables. Then the variable ‘z’ too will depend on variable ‘x’
through variable ‘y’. The chain rule then can be stated as,

The above derived two forms of the chain rule are interrelated and
represented as follows, when z = f(y) and y = g(x):
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Check Your Progress

4. When is a function said to be homogeneous of degree 1?
5. What does chain rule state?

3.4 EULER’S THEOREM

To prove Euler’s theorem, let us consider that a function f(x) holds the following
characteristic representation,

x →λx
f(x) →λf(x)
This representation specifies that f(x) is homogeneous with regard to ‘x’

and is of Degree ‘1’.
Similarly, if f(x) holds the following characteristic representation,
  x →λx
f(x) →λkf(x)
Then this representation specifies that f(x) is homogeneous with regard to

‘x’ and is of degree ‘k’. As a general rule, we can state that a multivariable function
f(x1, x2, x3, x4, . . . . ., xn) is considered as homogeneous of degree ‘k’ for any
value of ‘λ’ in the variables ‘xi’, where i = 1, 2, 3, 4, . . . . . , n. Thus,

f(λx1, λx2, λx3, λx4, . . . . ., λxn) = λkf(x1, x2, x3, x4, . . . . ., xn)
The Euler theorem is specifically used for establishing the correlation between

a homogeneous function and its partial derivatives, ∂f / ∂x, ∂f / ∂y, and ∂f / ∂z.
Consequently, the theorem established and proven by Euler states that when

any function f (ai), where i = 1, 2, 3, . . . . , n, is homogeneous to degree ‘k’, then
we can express that particular function in terms of its partial derivatives, as shown
below.

…(7)

Subsequently, as Equation (7) is considered true for all values of ‘λ’, hence
it will also be true for ‘λ – 1’. In such a situation, the Equation (7) is expressed in
the form as shown below.
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3.4.1 Verification of Euler’s Theorem

Thus, as per Euler Theorem, “If ‘u’ is a homogeneous function of ‘x’ and ‘y’ of
degree ‘n’, then,

Now we will prove the theorem and verify the result.
Proof of Euler’s Theorem:
Since as per Euler Theorem stated above, ‘u’ is defined as the homogeneous
function of ‘x’ and ‘y’ of degree ‘n’, hence ‘u’ can also be represented in the
following form:

…(8)

Now when we partially differentiate Equation (8) with regard to ‘x’, we get
the following form of equation,

Therefore,

…(9)

Now when we partially differentiate Equation (9) with regard to ‘y’, we get
the following form of equation,

 

Therefore,

…(10)

Now on adding Equations (9) and (10) we get the following form of equation:

(From Equation 8))

Therefore,
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Hence proved and verified

Remember that it is possible to extend the ‘Euler’s theorem’ to the
‘homogeneous function’ of ‘any number of variables’.

Accordingly, if a function f(x1, x2, x3, x4, . . . . ., xn) is a homogeneous
function of x1, x2, x3, x4, . . . . ., xn of Degree ‘n’, then we get the equation of the
form,

Example 8. Find the degree of homogeneity and then verify the Euler theorem for
the given equation of the form,

u = x4 – 3x3y + 5x2y2 + 4xy3 – 2y4

Solution: Given is,
u = x4 – 3x3y + 5x2y2 + 4xy3 – 2y4

Evidently, in this equation ‘u’ is the homogeneous function for ‘x’ and ‘y’,
and is of degree ‘4’.

Therefore, as per the Euler theorem we require the equation of the following
given form.

Now we will verify the same as follows.
We deduce the equation to obtain,

And,

Therefore,
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Hence, we obtain the equation,
= 4(x4 – 3x3y + 5x2y2 + 4xy3 – 2y4)
= 4u

Because, given is that u = x4 – 3x3y + 5x2y2 + 4xy3 – 2y4.
Henceforth, this verifies the legitimacy of the Euler’s theorem.

3.5 MAXIMA AND MINIMA OF FUNCTIONS OF
ONE VARIABLE AND TWO VARIABLES

By differentiation we can find the maxima and minima for any function of one
variable f(x) and two variables f(x, y).

3.5.1 Function of One Variable

The maxima and minima for any function of one variable f(x) takes place when,
 f ′(x) = 0

Descriptions

Therefore,
1.  x = a is maximum when f ′(a) = 0 and f ′′(a) < 0
2.  x = a is minimum when f ′(a) = 0 and f ′′(a) > 0
The point at which f ′′(a) = 0 and f ′′′(a) ≠ 0 is termed as ‘point of

inflection’. As per geometry, a curve that is in the two-dimensional plane (x, y)
can be represented by the equation y = f(x). The graph of the curve is represented
by the function f(x).

Definitions

1. A function f(x) is defined to be maximum at x = a, when there exists a
positive number ‘δ’ such that for all values of ‘h’ in the interval (–δ, δ)
excluding ‘0’ we have,
f(a + h)  <  f(a)

2. A function f(x) is defined to be minimum at x = a, when there exists a
positive number ‘δ’ such that for all values of ‘h’ in the interval (–δ, δ)
excluding ‘0’ we have,
f(a + h)  >  f(a)
These maximum value and minimum value of a function is also termed

as the ‘extreme values’ and the points at which these specific points occur are
termed as the ‘points of maxima and minima’.

Additionally, these points of maxima and minima of a function showing the
extreme values are termed as ‘turning points’.
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Properties of Maxima and Minima for a Function in One Variable

Following are the properties of the maxima and minima of a function showing the
extreme values.

1. Any function ‘y = f(x)’ is defined as maximum at ‘x = a’, when the sign of
dy/dx is changed from positive to negative at the moment ‘x’ passes through
‘a’.

2. Any function ‘y = f(x)’ is defined as minimum at ‘x = a’, when the sign of
dy/dx is changed from negative to positive at the moment ‘x’ passes through
‘a’.

3. Same function may have numerous maximum or minimum values.
4. In between the two equal/equivalent values of a function there must be at

least one maximum value and one minimum value.
5. If there is no change in the sign of dy/dx, i.e., from negative to positive or

positive to negative, when ‘x’ passes through ‘a’, then at the specified ‘x =
a’ we can define that ‘y’ is neither maximum nor it is minimum.

6. The ‘Maximum’ value and the ‘Minimum’ value of a function essentially
occurs in consecutive or alternate sequence.

Necessary Condition for Maximum and Minimum Values

Definition. A necessary or essential condition required for f(x) to be either
maximum or minimum at ‘x = a’ is ‘f ′(a) = 0’.

Stationary Values

Definition. A function f(x) is assumed to be stationary at ‘x = a’ when ‘f ′(a) = 0’.
Therefore, any function f(x) can be maximum or minimum at ‘x = a’ when

it is stationary at ‘x = a’.

Appropriate Conditions for Maximum and Minimum Values

Following are the sufficient or appropriate conditions that are required for the
function for maximum and minimum values.

1. The function f(x) will be maximum at ‘x = a’ when ‘f ′(a) = 0’ and
‘f ′′(a)’ is ‘negative’.

2. The function f(x) will be minimum at ‘x = a’ when ‘f ′(a) = 0’ and
‘f ′′(a)’ is ‘positive’.

As a general rule, when,
f ′(a) = f ′′(a) = f ′′′(a) = . . . . . = f (n – 1)(a) = 0
And,

f (n) (a) ≠ 0
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Then, for maximum and minimum values the ‘n’ is considered as an even
integer. Additionally, for ‘ f (n) (a)’ to be maximum it has to be negative while for
‘f (n) (a)’ to be minimum it has to be positive.

3.5.2 Function of Two Variables

The function of two variables can be written using the given form of equation,
z = f(x, y)

In this equation, the variables ‘x’ and ‘y’ are considered as the independent
variables while the variable ‘z’ is defined as the dependent variable. The graph
of the function of two variables is represented as a surface for a three-dimensional
space.

For Example

Here, ‘z’ represents the surface height above a specified point (x, y) in the
‘x – y’ plane.

Now, the graph for the function z = f(x, y) can have either maximum points
or minimum points or both.

Consequently, a point (a, b) that is considered either as a maximum point
or as a minimum point or as a saddle point is termed as ‘stationary point’ or
‘critical point’. The critical points or saddle points for the functions of a single
variable can be defined as the values of the function when the derivative is either
equal to ‘zero’ or it ‘does not exist’ at all. Principally, in the same way we can
define the functions of two or more variables.

Definition Stationary or Critical Point

Consider that z = f(x, y) is a function of two variables specifically defined for an
open set that contains the point (x0, y0). This point (x0, y0) is termed as the critical
point of a function of two variables ‘f’ when it holds any of the given two conditions,
i.e.,

1. Either  fx (x0, y0)  =  fy (x0, y0)  =  0

This can equivalently be expressed as, ∇f (x0, y0)  = 
2. Or fx (x0, y0)   and/or   fy (x0, y0)  does not exist at all.

Definitions Maximum Points or Minimum Points

1. A function f(x, y) can be considered minimum at the point (a, b) when
for all the points (x, y) in any specific region about (a, b) we have,
f(x, y)  ≥   f(a, b)
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2. A function f(x, y) can be considered maximum at the point (a, b) when
for all the points (x, y) in any specific region about (a, b) we have,
f(x, y)  ≤   f(a, b)

3. Consider that f(x, y) is a function of two independent variables ‘x’ and
‘y’ which is assumed to be continuous for all values of these variables ‘x’
and ‘y’ in the neighbouring region of their values ‘a’ and ‘b’, respectively.
Subsequently, f(a, b) can have maximum value or minimum value of the
function f(x, y) provided that f((a + h), (b + k)) is either less than or
greater than f(a, b), positive or negative, for almost all the appropriate
and small independent values of ‘h’ and ‘k’, so long as both are not equal
to ‘0’.

Necessary Conditions for the Existence of Maximum or Minimum of
Two Variables

The necessary conditions that must exist for the maximum value or minimum value
of two variables,  f(x, y) at ‘x = a’ and ‘y = b’ when the following given expression,

f((a + h), (b + k)) – f(a, b)
is of invariable or consistent sign, positive or negative, for almost all the

appropriate and small independent values of ‘h’ and ‘k’, so long as both are not
equal to ‘0’.

The function  f(x, y) at ‘x = a’ and ‘y = b’ will be maximum when the sign of
the f((a + h), (b + k)) – f(a, b) is negative. Alternately, the function  f(x, y) at
‘x = a’ and ‘y = b’ will be minimum when the sign of the f((a + h), (b + k)) – f(a,
b) is positive.

Using the Taylor’s Theorem given for the function of two variables, we get
the following equation.

f((a + h), (b + k))

f((a + h), (b + k)) – f(a, b)

+ Expressions of the second order and above

in ‘h’ and ‘k’
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Therefore, the necessary conditions state that the function  f(x, y) must have
maximum or minimum at ‘x = a’ and ‘y = b’ such that,

And,

These conditions are termed as necessary for maxima and minima to exist
but are not sufficient or appropriate.
Example 9. Given is dy/dx = x(x – 1)2 (x – 3)3, then find the maximum value and
minimum value of ‘y’.
Solution: To obtain the maximum value and minimum value of ‘y’,

dy/dx = 0
Specifically, x(x – 1)2 (x – 3)3 = 0
Or else, x = 0,x = 1,x = 3

For ‘y’ at ‘x = 0’

The dy/dx is defined as positive if ‘x’ is somewhat less than ‘0’. Alternatively, the
dy/dx is defined as negative if ‘x’ is somewhat greater than ‘0’. Therefore, the sign
of dy/dx will change from positive to negative when ‘x’ will pass through the value
‘0’. Consequently, we can state that when ‘x = 0’ then ‘y’ is maximum.

For ‘y’ at ‘x = 1’

The dy/dx is defined as negative if ‘x’ is somewhat less than ‘1’. Alternatively, the
dy/dx is defined as negative again if ‘x’ is somewhat greater than ‘1’. Therefore,
the sign of dy/dx will ‘NOT’ change at all when ‘x’ will pass through the value ‘1’.
Consequently, we can state that when ‘x = 1’ then ‘y’ is neither maximum nor
minimum.

For ‘y’ at ‘x = 3’

The dy/dx is defined as negative if ‘x’ is somewhat less than ‘3’. Alternatively, the
dy/dx is defined as positive if ‘x’ is somewhat greater than ‘3’. Therefore, the sign
of dy/dx will change from negative to positive when ‘x’ will pass through the value
‘3’. Consequently, we can state that when ‘x = 3’ then ‘y’ is minimum.
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Check Your Progress

6. When is a function f(x) assumed to be stationary?
7. What are the critical points?
8. What is the definition of maximum points for a function of two variables?

3.6 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1.  A differential equation which expresses one or more measures in terms of
partial derivatives is called a partial differential equation.

2. As per the Power Rule, the derivative of xn is nx(n − 1).

3. 15�2. 
4. A function is considered as ‘homogeneous of degree 1’ when its all or

whole arguments are multiplied with some number t > 0, and accordingly
the value of the function too is multiplied with the identical or similar
number t.

5. For the functions f and g, the chain rule states that the derivatives f ‘“ g, the
function that defines x to f (g(x)) as the derivatives of f and g, and the
product of functions as shown below.
(f O g)′ = (f ′O g) . g′

6. A function f(x) is assumed to be stationary at ‘x = a’ when ‘f ′(a) = 0’.
7. The critical points or saddle points for the functions of a single variable can

be defined as the values of the function when the derivative is either equal to
‘zero’ or it ‘does not exist’ at all.

8. A function f(x, y) can be considered maximum at the point (a, b) when for
all the points (x, y) in any specific region about (a, b) we have, f(x, y)  ≤
f(a, b).

3.7 SUMMARY

• A partial derivative of a function of several variables is its derivative with
respect to one of those variables, while the remaining others are considered
as constant.

• A differential equation which expresses one or more measures in terms of
partial derivatives is called a partial differential equation.

• Notations for second partial derivative of ‘f’.
(i) Differentiate ‘f’ two times with regard to ‘x’, thus ∂2f / ∂x2 or fxx

 (ii) Differentiate ‘f’ two times with regard to ‘y’, thus, ∂2f / ∂y2 or fyy
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• For mixed partials, we first differentiate ‘f’ with reference to ‘x’ and then
again differentiate the result with reference to ‘y’ that is obtained after the
first differentiation. Thus,∂2f / ∂y ∂x or fxy. Now differentiate ‘f’ with reference
to ‘y’ and then again differentiate the result with reference to ‘x’ that is
obtained after the first differentiation. Thus, ∂2f / ∂x ∂y or fyx

• A homogeneous function of two variables ‘x’ and ‘y’ is stated as a real-
valued function which satisfies and fulfills the condition, f (αx, αy) = αk

f(x, y) for specific constant ‘k’ and all real numbers ‘α’. The constant k is
termed as the degree of homogeneity.

• A function f(x, y) is a homogeneous function of ‘x’ and ‘y’ of degree ‘n’ if,
f(tx, ty) = tn f(x, y) for t > 0.

• Euler’s Theorem for Homogeneous 1. If ‘z’ is a homogeneous function of
‘x’ and ‘y’ of degree ‘n’ and first order partial derivative of ‘z’ exists, then,
xzy + yzx = nz.

• Euler’s Theorem for Homogeneous. State that, “If ‘F‘F : ℝ n → ℝ’’ is
differentiable at ‘x’ and homogeneous of Degree ‘k’, then ∇ F (x) . x = k F
(x)”.

• A function f(x) is defined to be maximum at x = a, when there exists a
positive number ‘δ’ such that for all values of ‘h’ in the interval (–δ, ) excluding
‘0’ we have, f(a + h)  <  f(a)

•  A function f(x) is defined to be minimum at x = a, when there exists a
positive number ‘δ’ such that for all values of ‘h’ in the interval (–δ, δ)
excluding ‘0’ we have, f(a + h)  >  f(a)

• A function f(x, y) can be considered minimum at the point (a, b) when for
all the points (x, y) in any specific region about (a, b) we have,  f(x, y)  ≥
f(a, b).

• A function f(x, y) can be considered maximum at the point (a, b) when for
all the points (x, y) in any specific region about (a, b) we have, f(x, y)  ≤
f(a, b).

3.8 KEYWORDS

• Derivative: Derivative, in mathematics, the rate of change of a function
with respect to a variable.

• Maxima and minima: In mathematical analysis, the maxima and minima
of a function, known collectively as extrema, are the largest and smallest
value of the function, either within a given range or on the entire domain of
a function.

• Homogeneous function: A homogeneous function is one with multiplicative
scaling behaviour: if all its arguments are multiplied by a factor, then its value
is multiplied by some power of this factor.
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• Constant: A quantity or parameter that does not change its value whatever
the value of the variables, under a given set of conditions.

3.9 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short Answer Questions

1. For the following given functions, find all the first order partial derivatives.

6�3 + �� − 1. 

2. Determine whether the function 4�2 + �2 − 1  is homogeneous or not. If
homogeneous then of what degree?

3. Discuss properties of maxima and minima for a function in one variable.
4. Given is f(x, y) = x2y + 7xy – 8, then find the partial derivatives fxy and fyx.

Long Answer Questions

1. Prove that the sum of two homogeneous functions cannot be essentially
homogeneous.

2. State and prove Euler’s theorem.
3. Find the degree of homogeneity and then verify the Euler theorem for the

given equation of the form, u = x4 – x3y - 9x2y2 + 4xy3 – y4

4.  Discuss the necessary conditions for the existence of maximum or minimum
of two variables.

5. Given is dy/dx = 2x(x – 4)2 (x – 5)3, then find the maximum value and
minimum value of ‘y’.
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UNIT 4 POLAR COORDINATES
AND ASYMPTOTES

Structure
4.0 Introduction
4.1 Objectives
4.2 Polar Coordinates
4.3 Radius of Curvature in Polar Coordinates
4.4 Asymptotes

4.4.1 Method of Finding Asymptotes
4.5 Answers to Check Your Progress Questions
4.6 Summary
4.7 Key Words
4.8 Self Assessment Questions and Exercises
4.9 Further Readings

4.0 INTRODUCTION

In this unit, you will learn about polar coordinates and concept of curvature in
polar coordinates. In mathematics, the polar coordinate system is a two-dimensional
coordinate system in which each point on a plane is determined by a distance from
a reference point and an angle from a reference direction.

The actual term polar coordinates has been attributed to Gregorio Fontana
and was used by 18th-century Italian writers. The term appeared in English in
George Peacock’s 1816 translation of Lacroix’s Differential and Integral Calculus.
Alexis Clairaut was the first to think of polar coordinates in three dimensions, and
Leonhard Euler was the first to actually develop them. Polar coordinates are used
often in navigation as the destination or direction of travel can be given as an angle
and distance from the object being considered.

Further in this unit, you will earn about asymptotes and its types. Asymptotes
convey information about the behavior of curves in the large, and determining the
asymptotes of a function is an important step in sketching its graph.

4.1 OBJECTIVES

After going through this unit, you will be able to:
• Understand the concept of polar coordinates
• Know the significance of radius of curvature in polar coordinates
• Discuss asymptotes and its types
• Describe method of finding asymptotes
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4.2 POLAR COORDINATES

Mathematically, the polar coordinate method can be defined as a two-dimensional
coordinate system wherein every single point on a plane is precisely established or
determined through a distance with regard to ‘a reference point and an angle
from a reference direction’.

The reference point is termed as the ‘pole’ and is considered as analogous
or equivalent to the Cartesian coordinate or Rectangular or ‘x-y’ system. The
ray that originates from the pole towards the reference direction is termed as the
‘polar axis’. The distance from the pole is termed as the ‘radial coordinate’ or
‘radius’ and the ‘angle’ is termed as the ‘angular coordinate’, ‘polar angle’ or
‘azimuth’.

Now using the Cartesian coordinate system, at the particular point for the
given or specified coordinates (x, y) to define the point we start at the origin and
then subsequently ‘x’ is moved horizontally while ‘y’ vertically, as shown in the
Figure 4.1.

Fig. 4.1 Coordinates ‘x’ and ‘y’

A point in a two-dimensional space can be determined on the basis of the
angle ‘θ’ made on the positive ‘x-axis’, as shown in Figure 4.2. The coordinates
of the point are defined as the distance of the specified point taken from the origin
‘r’ and the extent or degree required in rotating on the positive ‘x-axis’, i.e., ‘θ’
are termed as the polar coordinates (r, θ).

Fig. 4.2 Polar Coordinates (r, θ)
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The angle θ is measured as positive in the counterclockwise direction
from the polar axis while the angle θ is measured as negative in the clockwise
direction from the polar axis.

Consider that ‘r’ is any number. For plotting a point ‘P’ to relate with ‘r’
and ‘θ’,

1. When ‘r’ is positive then ‘P’ is defined as the intersection of the circle
with radius ‘r’ assuming that pole is the centre of the circle and also the angle
‘θ’ that is formed by the ray from the pole.

2. When ‘r’ is ‘0’ then ‘P’ is defined at the pole irrespective of whatsoever
the angle ‘θ’ measures.

3. When ‘r’ is negative then ‘P’ is defined from the pole at some distance
‘r’ on the ray which is exactly opposite to the ray that forms angle ‘θ’, i.e., on the
ray of angle ‘θ + π’.

In all of the above defined three conditions, ‘P’ is represented by (r, θ)
where the ‘r’ and ‘θ’ are termed as the polar coordinates of ‘P’, when the point
(r, θ) is positioned on the circle with centre at the pole and radius as ‘r’.

Consequently, the pole is considered as the midpoint or center for the points
(r, θ) and also (– r, θ).

Remember that we can consider the point (– r, θ + π) equivalent as the
point (r, θ). Additionally, when the angle is changed by ‘2π’ then there will be no
change in the point, i.e.,

(r, θ) = (r, θ + 2π) = (r, θ + 4π) = . . . . . = (r, θ + 2nπ)
Where ‘n’ can be any integer, positive or negative.
Therefore, in the plane we can define the polar coordinates (r, θ) through,

‘r’ = Distance from the Origin or Radial Coordinate
‘θ’ = Polar Angle or Angular Coordinate
‘θ∈ [0, 2π)’ = Counterclockwise Angle

Therefore, as per the Figure 4.3, we can make the convention that,
(– r, θ) = (r, θ + π)  or  (r, θ ± π)

Fig. 4.3 Polar Coordinates
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The Polar coordinates (r, θ) can also be stated in terms of Cartesian
coordinates as follows (Refer Figure 4.4).

x = r cos θ
y = r sin θ

r2 = x2 + y2            or       r = 

tan θ = y/x            or      θ = 

Here ‘r’ is the termed as the radial distance from the origin while ‘θ’ is
termed as the counterclockwise angle on the x-axis.

Fig. 4.4 Polar Coordinate to Cartesian Coordinate

The form can be interpreted by means of ‘two-argument inverse

tangent’ that takes the sign of ‘x’ and ‘y’ for determining the quadrant of ‘θ’.

How the Polar Coordinates are Converted to Cartesian Coordinates
For, x = r cos θ and y = r sin θ
We can convert from Polar form to Cartesian as follows.

  x2 + y2 = (r cos θ)2 + (r sin θ)2

   = r2 cos2 θ + r2 sin2 θ
   = r2 (cos2 θ+ sin2 θ)  =  r2

Hence, r2 = x2 + y2

The above formula is very significant. Now on taking the square root of
left-hand side and right-hand side we have,
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Mathematically, there must be a plus or a minus sign in front of the root
because ‘r’ is either positive or negative. Taking ‘r’ as positive we have,

y/x =  r sin θ/r cos θ  =  tan θ
On both sides taking inverse tangent we have,

θ = tan – 1 (y/x)
Remember that the inverse tangent will only yield values in the following

given range,
(–π/2)  <  θ  <  (π/2)

The another possible angle is ‘θ + π’.
The point (r, θ)  can be expressed as an ordered pair (r, θ) and is termed as

‘polar notation’, the equation for the curve that is represented as polar coordinates
is termed as ‘polar equation’ while the curve that is plotted in polar coordinates is
termed as ‘polar plot’. Similarly, we can plot the Cartesian curves on the rectilinear
axes while we can draw the polar plots on the radial axes as shown in Figure 4.5.
Normally, in polar notation the angles are expressed either in degrees or in radians
where 2π rad is equal to 360°. Figure 4.5 displays a polar grid with different
angles that are labelled in degrees.

Fig. 4.5 A Polar Grid Showing Different Angles Labelled in Degrees

Example 1. Convert the point (2, π/3) from polar coordinate to Cartesian
coordinate.
Solution: Follow the steps given below for converting the points (2, π/3) from
polar coordinate to Cartesian coordinate.

Because, r = 2  and θ = π/3
Now, x = r cos θ

   = 2 cos π/3 = 2 × 1/2 = 1
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And, y = r sin θ

   = 2 sin π/3 = 2 × /2 = 

Hence, points (2, π/3) in Cartesian coordinate is (1, ).

Example 2. Convert the points (– 1, – 1) into polar coordinates.
Solution: Follow the steps given below for converting the points (– 1, – 1) into
polar coordinates.

We will first obtain ‘r’ as follows.

r = 

Now we will obtain ‘θ’ as follows.

θ = = tan – 1 (1) = π/4

Though, this angle is not correct, since this value of angle ‘θ’ is for the first
quadrant but the points that are given actually position in the third quadrant. To
obtain the correct angle, we add ‘π’ to the equation as follows.

θ = π/4 + π = 5π/4
Therefore, points (– 1, – 1) into polar coordinates is written as

( , 5π/4).

The angle ‘θ’ can also be evaluated by taking ‘r’ as negative. When ‘r’ is
negative then the points in the polar coordinates can be written as ( , π/4).

Simple Polar Coordinate Graphs

We can draw the polar coordinate graphs using the following notations and
equations.
Graph Lines: The following are the simple form of equations for polar graph.
1. For θ = β
This line is formed by converting the equation to Cartesian coordinate form as,

     θ = β
tan – 1 (y/x) = β

(y/x) = tan β
      y = (tan β) x

    This line passes through the origin making angle ‘β’ on the positive
x-axis.

Alternatively, this line passes through the origin having a slope as tan β.
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2. For r cos θ = a
This line is formed by simply converting to the form Cartesian coordinates as,

x  =  a
    Because, x = r cos θ. The line formed is a vertical line.

3. For r sin θ = b
Similarly, this line is formed by converting to the form Cartesian coordinates as,

y  =  b
    Because, y = r sin θ. The line formed is a horizontal line.

Circles: The following are the equations for circles with regard to the polar
coordinates.
1. For r = a
The equation ‘r = a’ specifies that the distance from the origin is ‘a’ irrespective of
the type of angle, i.e., it can be defined as the circle which is centered at the origin
having radius ‘a’.
2. For r = 2a cos θ
The equation ‘r = 2a cos θ’ specifes that this is a circle having radius ‘a’ and a
center (a, 0). In this equation if ‘a’ be negative then we will mark absolute values
on the bar but not on the centre.
3. For r = 2b sin θ
The equation ‘r = 2b sin θ’ specifes that this is a circle having radius ‘b’ and a
center (0, b).
4. For r = 2a cos θ +  2b sin θ
The equations of above mentioned two conditions 2 and 3 are combined to complete

the square and to obtain the circle having radius and the center at
(a, b). This equation states the general equation of a circle which is not at all
centred at the origin.
Cardioids and Limacons: The following are the three valid equations about
Cardioids and Limacons.
1. Cardioids

r = a ± a cos θ    and     r = a ± a sin θ
The graphs always have the origin and are ambiguously of heart shaped.

2. Limacons with an Inner Loop
r = a ± b cos θ    and     r = a ± b sin θ   using a < b
These graphs also always have the origin and contain an inner loop.

3. Limacons without an Inner Loop
r = a ± b cos θ    and     r = a ± b sin θ   using a > b
The graphs neither have the origin nor they have an inner loop.
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Check Your Progress

1. What is polar axis?
2. Define the polar coordinates (r, θ) in a plane.
3. What does r = 2b sin θ specify?

4.3 RADIUS OF CURVATURE IN POLAR
COORDINATES

The term ‘Curvature’ is specifically used for measuring how fast the direction is
changed whenever we move a small distance along a curve. The direction can be
assigned a numerical value termed as the ‘angle of the tangent line’. The curvature
is measured on the basis of rate of change of this angle with reference to arc
length.
Definition. Augustin-Louis Cauchy has defined the center of curvature ‘C’ as
the intersection point of two infinitely close normals to the curve, the ‘radius of
curvature’ as the distance from the point to C, and the curvature itself as the
inverse of the radius of curvature. The curvature of a circle is therefore defined to
be the reciprocal of the radius as,

κ = 1 / R
Where ‘κ’ (Kappa) represents curvature while ‘R’ represents the radius of

the circle.
Definition 1. The reciprocal of the curvature of a curve is called the ‘radius of
curvature’ of the curve.
Definition 2. The ‘radius of curvature’ of a curve at a point is the reciprocal of
the curvature, i.e.,
Radius of Curvature or ‘ρ’ = 1 / Curvature = 1 / κ

Where ‘ρ’ represents the radius of curvature.
Definition. In the polar coordinates ‘r = r (θ)’, the ‘radius of curvature’ is
represented as,

Where rθ = dr / dθ  and  rθθ = d2r / dθ2
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Definition. If a curve is given by the polar equation ‘r = r(θ)’, then the
curvature is calculated by the formula,

κ = 

The radius of curvature of a curve at any point is termed as the inverse of
the curvature ‘κ’ of the curve and is represented as,

ρ = 1 / κ
Where ‘ρ’ represents the radius of curvature.

Example 3. For the parabola y = x2 at the origin, find the curvature and radius of
curvature.
Solution: We will first state the derivatives of the quadratic function as follows,

y ′ = (x2)′ = 2x
y ′′ = (2x)′ = 2

Subsequently, the curvature of the parabola is obtained using the formula,

κ = 

Therefore, at the origin, i.e., at ‘x = 0’:
Curvature ‘κ’ is,

 κ (x = 0)  =   =  2

And the Radius of Curvature ‘ρ’ is,
ρ = 1 / κ   = 1 / 2

Check Your Progress

4. Define curvature of  a circle.
5. What is radius of curvature of a curve?



Polar Coordinates
and Asymptotes

NOTES

Self-Instructional
76 Material

4.4 ASYMPTOTES

Definition. An asymptote of a curve is defined as a line which is tangent to the
curve at a point at infinity.
Definition. An asymptote of a curve ‘y = f(x)’ that has an infinite property is
defined as a line such that the distance between the points (x, f(x)) lying on the
curve and the line approaches zero as the point moves along the point at infinity.
Definition. An asymptote is defined as a line or curve that approaches a given
curve arbitrarily closely. This is shown in Figure 4.6.

Fig. 4.6 Asymptotes

Basically, the asymptotes are categorized into three types as horizontal
asymptotes, vertical asymptotes and oblique asymptotes. These asymptotes can
be defined for the curves of the graph of a function y = f(x) as follows.

Vertical Asymptotes

These are the vertical lines which define that near it the function can grow without
any bound. We can define the vertical asymptote of the form as the straight line for
‘x = a’ of the graph for the function ‘y = f(x)’ when in any case one of the below
given conditions is true:

1. 

2. 
Alternatively, at the point ‘x = a’ at least any one of the above defined limits

essentially be equal to infinity.
The vertical asymptote is possible in the function in which at the points the

graph of the function ‘y = 1/x’ has ‘x = 0’ as the vertical asymptote, as shown in
the Figure 4.7.
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Fig. 4.7 Vertical Asymptote

As per the Figure 4.7, we can state that both the following limits, left and
right, tend to infinity. Thus,

      and      

Remember that there is no vertical asymptotes of a function that is continuous
on the whole set of real numbers.

Oblique Asymptotes

These asymptotes have a non-zero but finite slope, i.e., when the graph of the
function approaches it when ‘x’ tends to either ‘+∞’ or – ∞’.

In Figure 4.8, the straight line ‘y = kx + b’ is termed as the oblique or slant
asymptote for the graph of the specific function ‘y = f(x)’ since ‘x →  + ∞’ and
when,

In the same way, we can have the oblique asymptote as ‘x →  – ∞’.

Fig. 4.8 Oblique Asymptote
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The oblique asymptote can be different for the graph of the function ‘y =
f(x)’ for the conditions ‘x →  + ∞’ and ‘x →  – ∞’.

Hence, in order to find out the oblique asymptotes we must separately
consider both the above mentioned conditions.

The following theorem defines the ‘k’ and ‘b’, the coefficients of oblique
asymptotes.
Theorem. A straight line ‘y = kx + b’ is an asymptote of the function ‘y =
f(x)’ as ‘x →  + ∞’ if and only if the following two limits are finite:

   and   

Proof.
Consider that the straight line ‘y = kx + b’ is an asymptote for the graph of the
function ‘y = f(x)’ when ‘x →  + ∞’, then the following given condition holds true:

Equivalently, we can state that,
f(x) = kx + b + α (x)

Where,

Now, when both sides of the equation is divided by ‘x’ then we have,

⇒

Accordingly, for the limit as ‘x →  + ∞’, we get the following form of
equations:

Assume that the finite limits exist, then

1.  

2.
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The limit defined in the above mentioned case 2 can be represented in the
form,

This satisfies the condition defined in the definition of the oblique asymptote.
Therefore, the straight line ‘y = kx + b’ is an asymptote of the function ‘y = f(x)’.

Hence, proved.

Horizontal Asymptotes

These are the horizontal lines which state that the graph of the function approaches
when ‘x’ tends to either ‘+∞’ or – ∞’.

We can acquire a horizontal asymptote by defining the equation of the line
‘y = b’, specifically when ‘k = 0’. The following theorem states the essential
conditions required for the horizontal asymptote to exist.

Theorem. A straight line ‘y = b’ is an asymptote of a function ‘y = f(x)’
specifically as ‘x →  + ∞’, if and only if the following limit is finite:

Similar conditions apply for ‘x →  – ∞’.
Note: An asymptote is defined as a line which is precisely the graph of a function
which approaches but under no circumstances touches.

4.4.1 Method of Finding Asymptotes

Any given rational function possibly will or will not have a vertical asymptote,
based on the condition that the denominator is equals to ‘0’, but it will definitely
have a horizontal asymptote or an oblique asymptote.

The method used for finding the horizontal asymptote depends on by what
method the degrees of the polynomials are compared in the numerator and
denominator.

1. When both polynomials have the same degree then we divide the
coefficients terms of highest degree.

2. When the polynomial in the numerator is comparatively of lower degree
as that of the denominator, then the x-axis (y = 0) has the horizontal asymptote.

3. When the polynomial in the numerator is comparatively of higher degree
as that of the denominator, then there will not be any horizontal asymptote.

For example, if
f(x) = 6x2 – 3x + 4 / 2x2 – 8

Then in this case both the polynomials are of ‘Degree 2’ hence the horizontal
asymptote is at,
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Either, y = 6/2
Or, y = 3

Example 4. Find the asymptotes for the function of a graph,
y =  x / x + 1

Solution: For finding the the asymptotes follow the steps given below.
If ‘x = – 1’ then the function is assumed to be discontinuous. Certainly then,

1.

           

  = – 1/– 0    =  + ∞

2.

           

  = – 1/ +0    =  – ∞
Therefore, the equation ‘x = – 1’ specifies that it is the equation for vertical

asymptote and the vertical asymptote exists.
For finding the horizontal asymptote we compute as follows:

Consequently, the curve has the horizontal asymptote and the equation for
the horizontal asymptote graph is ‘y = 1’, i.e., the horizontal asymptote exists.

The oblique asymptote does not exist at all. Let us prove this by computing
the coefficients ‘k’ and ‘b’ as follows:

1.
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2.

      

      

Thus, after computing the limits, we have obtained the equation as ‘y = 1’,
i.e., the horizontal asymptote. The oblique asymptote does not exist.

Therefore, for the graph of the function we obtained,
Vertical Asymptote = ‘x = – 1’
Horizontal Asymptote = ‘y = 1’
Oblique Asymptote = Does Not Exist

Following graph in Figure 4.9 is of the horizontal and vertical asymptotes.

Fig. 4.9 Horizontal and Vertical Asymptotes

Check Your Progress

6. What is an asymptote?
7. What are oblique asymptotes?
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4.5 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. The ray that originates from the pole towards the reference direction is
termed as the polar axis.

2. In the plane we can define the polar coordinates (r, θ) through,
r = Distance from the Origin or Radial Coordinate
θ = Polar Angle or Angular Coordinate
θ∈ [0, 2π) = Counterclockwise Angle

3. The equation ‘r = 2b sin θ’ specifes that this is a circle having radius ‘b’
and a center (0, b).

4. The curvature of a circle is therefore defined to be the reciprocal of the
radius.

5. The reciprocal of the curvature of a curve is called the radius of curvature
of the curve.

6. An asymptote of a curve is defined as a line which is tangent to the curve at
a point at infinity.

7. These asymptotes have a non-zero but finite slope, i.e., when the graph of
the function y = f(x) approaches it when ‘x’ tends to either ‘+∞’ or – ∞’.

4.6 SUMMARY

• The polar coordinate are determined through a distance with regard to ‘a
reference point and an angle from a reference direction’. The reference
point is termed as the ‘pole’. The ray that originates from the pole towards
the reference direction is termed as the ‘polar axis’. The distance from the
pole is termed as the ‘radius’ and the ‘angle’ is termed as the ‘angular
coordinate’, ‘polar angle’.

• x = r cosθ, y = r sinθ, r2 = x2 + y2  and tan θ = y/x where (r, θ) are polar
coordinates and (x, y) are Cartesian coordinates.

• The curvature of a circle is therefore defined to be the reciprocal of the
radius as, κ = 1 / R where ‘κ’ (Kappa) represents curvature while ‘R’
represents the radius of the circle.

• The reciprocal of the curvature of a curve is called the ‘radius of curvature’
of the curve.

• The ‘radius of curvature’ of a curve at a point is the reciprocal of the curvature.
• In the polar coordinates ‘r = r (θ)’, the ‘radius of curvature’ is represented

as,
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 Where rθ = dr / dθ  and  rθθ = d2r / dθ2

• If a curve is given by the polar equation ‘r = r(θ)’, then the curvature is
calculated by the formula,

κ =    

• The radius of curvature of a curve at any point is termed as the inverse of
the curvature ‘κ’ of the curve and is represented as, ρ = 1 / κ where ‘ρ’
represents the radius of curvature.

• An asymptote of a curve is defined as a line which is tangent to the curve at
a point at infinity. The asymptotes are categorized into three types as
horizontal asymptotes, vertical asymptotes and oblique asymptotes.

4.7 KEYWORDS

• Polar coordinates: the polar coordinate system is a two-dimensional
coordinate system in which each point on a plane is determined by a distance
from a reference point and an angle from a reference direction.

• Cartesian coordinates: numbers which indicate the location of a point
relative to a fixed reference point (the origin), being its shortest (perpendicular)
distances from two fixed axes (or three planes defined by three fixed axes)
which intersect at right angles at the origin.

• Polar angle: In the plane, the polar angle theta is the counterclockwise
angle from the x-axis at which a point in the xy-plane lies.

• Radius: a straight line from the centre to the circumference of a circle or
sphere.

• Asymptote: an asymptote of a curve is a line such that the distance between
the curve and the line approaches zero as one or both of the x or y coordinates
tends to infinity.

4.8 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short Answer Questions

1. Convert the point (5, – 2) into polar coordinates.
2. Convert the point (3, 2π/3) from polar coordinate to Cartesian coordinate.
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3. Graph the polar equation r = 1 + sin θ.
4. Graph the polar equation r = 1 + cos θ.

Long Answer Questions

1. Discuss polar coordinates with help of a graph.
2. How are the polar coordinates converted to Cartesian coordinates?
3. Expalin the method used for finding the horizontal asymptote.
4. Find the asymptotes for the function of a graph,

y =  2x / 2x + 1
5. Briefly describe vertical asymptote.
6. Briefly describe horizontal asymptote.
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BLOCK - II
ENVELOPES, EVOLUTES AND INTEGRALS

UNIT 5 TANGENTS, CURVATURE,
ENVELOPES AND
EVOLUTES

Structure
5.0 Introduction
5.1 Objectives
5.2 Tangents and Normal Angle of Intersection
5.3 Curvature
5.4 Envelopes and Evolutes

5.4.1 Working Method to find Envelope and Involutes
5.5 Answers to Check Your Progress Questions
5.6 Summary
5.7 Key Words
5.8 Self Assessment Questions and Exercises
5.9 Further Readings

5.0 INTRODUCTION

This unit describes how differentiation can be used to calculate the equations of
the tangent and normal to a curve. The tangent is a straight line which just touches
the curve at a given point. The normal is a straight line which is perpendicular to
the tangent. Aspects of curvature are also discussed in this unit. Curvature is a
measure of how much the curve deviates from a straight line. In other words, the
curvature of a curve at a point is a measure of how much the change in a curve at
a point is changing, meaning the curvature is the magnitude of the second derivative
of the curve at given point. In the end, you will learn about envelopes and evolutes.
The idea of an envelope plays an important role in determining solution to fully
nonlinear scalar partial differential equation.

5.1 OBJECTIVES

After going through this unit, you will be able to:
• Define tangents, normal to a curve and normal angle of intersection
• Calculate the equation of the tangent to a curve at a given point



Tangents, Curvature,
Envelopes and Evolutes

NOTES

Self-Instructional
86 Material

• Calculate the equation of the normal to a curve at a given point
• Know about curvature and its angles
• Find envelopes and evolutes for a curve

5.2 TANGENTS AND NORMAL ANGLE OF
INTERSECTION

Definition. The tangent line or simply tangent to a plane curve at any given
point is the straight line that simply touches the curve at that point.
Definition. At a given point on a curve, the gradient of the curve is equal to
the gradient of the tangent to the curve. This is shown in Figure 5.1.

Fig. 5.1 Tangents and Normal Angle of Intersection

Fundamentally, the derivative or gradient function defines the gradient of a
curve at some particular point on the stated curve. Additionally, it also defines the
gradient of a tangent to a curve at some particular point on the stated curve.
Definition. The normal to a curve is the line perpendicular to the tangent to
the curve at a given point. Thus,

mtangent  ×   mnormal   =   ‘– 1’

Equation of a Normal to a Curve

The term ‘normal’ specifies that it is either ‘perpendicular’ or ‘at right angles’.
In Figure 5.2, the normal is represented by a line which is at right angles or
perpendicular to the ‘tangent’.



Tangents, Curvature,
Envelopes and Evolutes

NOTES

Self-Instructional
Material 87

Fig. 5.2 Normal Line at Right Angles to the Tangent

To find the equation for the normal with regard to a curve, consider two
lines which are at right angles (perpendicular) to each other and have the gradients
as m1 and m2, respectively. The product of the gradients m1 and m2 has to be
‘– 1’, i.e.,

m1  ×   m2   =   ‘– 1’

Definition of Normal to a Curve

The normal to a curve at some particular point ‘P’ can be defined as the straight
line that passes through that point and is at right angles or perpendicular to the
tangent of the curve at that specified point (Refer Figure 5.3).

Definition of Tangent to a Curve

To define a tangent to a curve, consider that ‘P’ is some particular point on a
curve and let ‘Q’ be some other point that lies in the region near point ‘P’, as
shown in Figure 5.3. Moreover, the point ‘Q’ may possibly be considered on
either side of point ‘P’. When ‘Q’ tends towards ‘P’, then the straight line ‘PQ’
normally tends in the direction of a definite straight line ‘TP’ which passes through
‘Q’. This straight line is termed as the ‘tangent’ to the curve at the specified
point ‘P’.

Fig. 5.3 Tangent to a Curve
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Equation of the Tangent

To define the equation of the curve, consider that the function ‘y = f(x)’ be the
Cartesian equation of a specific curve. Let a point ‘P’ is specified on the coordinates
(x, y) on the stated curve. Now, on this curve in the region near point ‘P’consider
a point Q(x + δx, y + δy), as shown in Figure 5.3. When (X, Y) are defined as the
current coordinates of a specified point on the ‘chord PQ’, then in such a case we
have the following equation for the chord ‘PQ’.

Or,

Consequently, when ‘Q’ tends towards ‘P’, then δx → 0 and chord PQ
will tend towards the tangent at ‘P’. Hence, in such a case the above equation will
have the form,

Because,

Therefore, the equation of the tangent to the curve y = f(x) at the point
(x, y) is as follows,

Case 1: Similarly, for finding the equation of the tangent for the curve y = f(x) at
the specified points (x1, y1), first we have to find the value of dy/dx for the curve
at the specified point (x1, y1). The equation of the tangent at the specified point
(x1, y1) is as follows,

Here, (x, y) are defined as the current coordinates of some particular point
on the tangent.
Case 2: The equation of the tangent can also be defined when the given equations
of the curve are in the form parametric Cartesian as follows,

x = f(t) and          y =  φ(t)
Then accordingly, we have the equation,



Tangents, Curvature,
Envelopes and Evolutes

NOTES

Self-Instructional
Material 89

Therefore, on the given curve, the equation of the tangent at some particular
point ‘t’ can be defined as follows,

Description of dy/dx in Accordance with Geometry

To geometrically define dy/dx, consider ‘P’ as some specific point (x, y) for the
given curve y = f(x).

Assume that ‘x’ increases in the positive direction because of the tangent at
‘P’. Let this positive direction caused by the tangent at ‘P’ makes an angle ‘ψ’
along with the specified positive direction on the x-axis, as shown in the Figure
5.4. Then the equation for the tangent at ‘P’ can be given as follows,

Then, …(1)

We can define that the Equation (1) is of the form,
Y = mX + c                  …(2)

As per the Equation (2) specifies that it is for the straight line with gradient
as ‘m’, specifically with the positive direction on x-axis, the line forms an angle
with tangent as ‘m’.

Consequently, on equating Equations (1) and (2), we have the following
resultant equation:

dy/dx = tan ψ

Fig. 5.4 Tangent at ‘P’ makes an Angle ‘ψ’

Definition. The differential coefficient dy/dx at some particular point (x, y) on the
curve y = f(x) is equal to the tangent of the angle which the positive direction of the
tangent at ‘P’ to the curve makes with the positive direction of the x-axis.
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Tangents Parallel to Coordinate Axes

Definition. While the tangent at some specific point is parallel to the axis of ‘x’,
then it can be defined that ‘ψ = 0’ specifically ‘tan ψ = 0’ and hence at that
specific point ‘dy/dx = 0’. Alternatively, when the tangent is parallel to the axis of
‘y’ or it is perpendicular to the axis of ‘x’ then we can state that at the stated point,

      ψ = π/2
Specifically, tan ψ = tan (π/2) = ∞
Therefore,  dy/dx = ∞    or    dx/dy = 0

Equation of Normal
Consider that on the curve y = f(x), when ‘P’ is some specific point (x, y) then the
equation of the tangent at ‘P’ of the form,

Or else,

Consequently, the gradient can be defined as ‘dy/dx’ of the tangent at ‘P’.
Additionally, when the gradient of normal at the point ‘P’ is defined by ‘m’

then,
m . dy/dx = – 1

Or, m = – 1 / (dy/dx) = – (dx/dy)
Therefore, the equation of normal for the specified curve at the point ‘P’ is

of the form,

Or,  = 0

Note: When the equation of a specified curve has the form f(x, y) = 0, then we
have the equation,

dy/dx = – ((∂f/∂x) / (∂f/∂y))

Angle of Intersection

Definition. The angle of intersection of two curves is specified as the angle
between the tangents of the two curves at the point of intersection. For
determining or defining the angles of intersection for the two specified curves, we
can state,

 f(x, y) = 0 …(3)
And, φ(x, y) = 0 …(4)
By simultaneously solving Equations (3) and (4), we obtain the points of

intersection for the Equations (3) and (4).
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If one of the points of intersection is taken as (x1, y1), then for finding the
angle of intersection at the point (x1, y1) we will first obtain the slopes of the two
curves as m1 and m2 for the tangents of both the curves at the points (x1, y1) as
given below.

Since, m1 =  (dy/dx) at the points (x1, y1) for the curve of Equation (3)
And,  m2 =  (dy/dx) at the points (x1, y1) for the curve of Equation (4)
Subsequently, we can define that:
Whenm1 = m2, then the angle of intersection will be 0°.
Alternatively, we can state that ‘m1 = m2’ is the necessary condition when

the two curves will touch each other at the point of intersection.
Whenm1 = ∞, and m2 = 0, then the angle of intersection will be 90°.
Whenm1 m2 = – 1, then the angle of intersection for a second time will be

90° and the intersection of the two curves will be orthogonal or at the right angles.
In the all remaining conditions, we can state that the acute angle that exists

between the tangents will be equivalent to,

Let us understand the concept of the angle of intersection of two curves
with the help of an example. Consider that the given two curves form the angle of
intersection as ‘θ’ at the point of intersection ‘P’, as shown in Figure 5.5, then we
can state that,

θ = ψ1 – ψ2

Or, θ = tan– 1(m1 – m2) / (1 + m1 m2)
The angles ‘ψ1’ and ‘ψ2’ are the angles specifically made by the tangents

towards the two curves on the point of intersection along with the positive direction
of the x-axis. Subsequently, m1 and m2 can be defined as gradients of the two
specified curves on the point of intersection, viz.,

m1 = tan ψ1 and m2 = tan ψ2

Fig. 5.5 Angle of Intersection of Two Curves
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Example 1. Find the angle of intersection of the curves y2 = x and x2 = y.
Solution: To find the angle of intersection of the curves y2 = x and x2 = y, we will
first solve these given equation as follows,

y2 = x
And, x2 = y
⇒ x4 = x      or       x4 – x = 0
⇒ x (x3 – 1) = 0
⇒ x = 0,  x = 1
Consequently, y = 0,  y = 1
Hence, the points of intersection are,

(0, 0)   and   (1, 1)
Additionally,

y2 = x
⇒ y(dy/dx) = 1
⇒ dy/dx = 1/2y
Similarly,

x2 = y
⇒ dy/dx = 2x
Therefore,
At (0, 0), for the curve ‘y2 = x’, the slope of the tangent is parallel to y-axis

and for the curve ‘x2 = y’, the slope of the tangent is parallel to x-axis.
⇒ Angle of intersection =  π/2

At (1, 1), for the curve ‘y2 = x’, the slope of the tangent is equal to 1/2 and
for the curve ‘x2 = y’, the slope of the tangent is equal to 2.

Hence,

⇒

Example 2. Analyze the condition when the curves ;  xy = c2 will

orthogonally intersect each other.
Solution: To evaluate the condition that the given curves intersect orthogonally,
assume that the intersection of curves takes place at (x1, y1).
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Hence, on equating the given equation we have,

⇒

⇒

⇒ The slope of the tangent of the curve at the point of

intersection, say (m1) will be,

Further, for the curve xy = c2 on equating we have,
xy = c2

⇒

⇒ dy / dx = (– y) / x
⇒ The slope of the tangent of the curve xy = c2 at the point of

intersection, say (m2) will be,
m2 = (– y1) / x1

Applying the formula for the curves to intersect orthogonally,
m1 m2 = – 1

⇒ b2 / a2 = 1   or     a2 – b2 = 0

Check Your Progress

1. What is a tangent line?
2. What is normal to a curve?
3. What is angle of intersection?

5.3 CURVATURE

The term ‘Curvature’ is defined as the bending of curves at the different varied
points. Assume that a curve has a point ‘P’ on it, as shown in Figure 5.5. Now, let
‘Q’ be another point near the point ‘P’ on the curve, i.e., both are adjacent points.
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Consider a fixed point ‘A’ on the same plane curve on which we have assumed
points P and Q. Let at point ‘R’ the tangents at P and Q meet such that angle ‘δψ’
is at R when due to tangents at P and Q the angles ‘ψ’ and ‘ψ + δψ’ are made on
the x-axis.

Now, assume that,
Arc AP = S
And Arc AQ = S + δS
Therefore, Arc PQ = δS
Because,
        ‘ψ’ and ‘ψ + δψ’ are the angles made due to tangents at P and Q on

the x-axis
Consequently,  ‘δψ’ is termed as the total curvature of the Arc PQ.
And,     ‘δψ/δS’ is termed as the average curvature of the Arc

PQ.
Hence, the curvature of the curve at point P is defined as,

Fig. 5.5 Curvature and its Angles

5.4 ENVELOPES AND EVOLUTES

An ‘Envelope’ can be defined as a ‘curve’ that touches every single member of
the family of curves or lines. The axes of the circles are termed as the envelopes
for the methods of circles represented as,

(x – a)2 + (x – a)2 = a2
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An ‘Evolute’ are the envelope of the normals to the specified curve. It can
also be assumed as the ‘locus of the centres of curvature’. 
Definition ‘Evolute’. According to the differential geometry of curves, we can
define that the evolute of a curve is the locus of all its centers of curvature, i.e.,
when the center of curvature of each point on a curve is drawn, then the resulting
subsequent shape will be the evolute of that curve. Hence, “The evolute of a
circle is a single point at its center. Equivalently, an evolute is the envelope
of the normals to a curve”.

Let us first understand the concept of family of curves. A curve is represented
by an equation which has the form,

 f (x, y, α) = 0                 …(5)
In this equation ‘α’ is a constant. If we consider α as a parameter, specifically

when α takes all of the real values then in this case Equation (5) will be the equation
of ‘one parameter family of curves with α parameter’. We can provide
different values to α in order to obtain various other members of the curve family,
i.e., for different values of ‘α’ we obtain different curves.
Note: For any specific curve that belongs to this specific family the values of α
will remain constant however it will modify from one curve to another curve. In the
equation, every constant of the specified curve may not be a parameter.

Notation

1. The family of curves with one or single unique parameter ‘α’ is represented
by, f (x, y, α) = 0

2. The family of curves with two unique parameters ‘α, β’ is represented
by,

f (x, y, α, β) = 0
Consider that a family of circles (Refer Figure 5.6) has the following form of

equation,
x2 + y2 – 2ax = 0

Figure 5.6 illustrates the family of circles in which all the circles have their
centres on the X-axis and all the circles pass through the origin ‘O’.

In the equation ‘x2 + y2 – 2ax = 0’, ‘a’ represents a set of circles having
centres on the X-axis and passing through the origin ‘O’.

In general, the equation of the plane curve comprises of two existing
coordinates ‘x, y’ of the specified point (x, y) on the certain curve and definite
constants. These definite constants precisely define the ‘size or extent, shape or
nature and position of that curve’.
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Fig. 5.6 Family of Circles

Definition ‘Envelope’. An ‘Envelope’ can be defined as a ‘curve’ that touches
every single member of the family of curves or lines. The axes of the circles are
termed as the envelopes for the methods of circles represented as,

(x – a)2 + (x – a)2 = a2

The essential and sufficient condition for an envelope to exist for a family of
curves ‘f (x, y, α) = 0’, here ‘α’ is a parameter, is

Evolute and Involute

Definition. The involute of a circle is defined as the curve for which all the
normals are tangent to a fixed circle. Conversely, when an involute of a specified
circle goes around the centre of the generating circle, then every tangent to the
circle will always remain normal to the involute.

Let us understand the concept with the help of an example. Select the point
on a curve and attach a string to it. Now, extend the string such that it remains
tangent towards the curve on the point from where it is attached. Then keeping the
string constantly stretched, gale the string up. Refer Figure 5.7 which illustrates
this process for a circle. The locus of points that are drawn by the end of the
stretched string is termed as the ‘involute of the original definite curve’ while
the original definite curve itself is termed as ‘the evolute of its involute’.

Fig. 5.7 Involute of the Original Definite Circle
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Even though a curve represents a unique evolute, but it also considerably
denotes numerous involutes that corresponds to the various options selected as of
initial point. Therefore, “An involute can be defined as some specific curve
which is orthogonal to all the tangents to a specified assumed curve”.

5.4.1 Working Method To Find Envelope And Involutes

Consider that the family of curves has the equation of the form,
F (x, y, α) = 0 …(6)

Assume that ‘P’ is the point of intersection of the two specified curves
having the equation of the form,

F (x, y, α) = 0    and     F (x, y, α + δα) = 0 …(7)
Here, ‘α’ and ‘α + δα’ are the parameters of the curve family. In the

curves of Equation (7) the coordinates of the points of intersection satisfy the
equation of the form,

F (x, y, α) = 0
And, F (x, y, α + δα) – F (x, y, α) = 0
Consequently, we have the equations,

F (x, y, α) = 0
And, (F (x, y, α + δα) – F (x, y, α)) / δα = 0
When we take limits as ‘δα→ 0’, then the coordinates for the position of

points of intersection of the Equation (5.7) curves will satisfy the following equation:
F (x, y, α) = 0

And, δF (x, y, α) / δα = 0  …(8)
Therefore, for all values of ‘α’, on the envelope the coordinate points satisfy

the Equation (8). On eliminating ‘α’ in the Equation (8) we obtain the equation of
the envelope for the family of curves.

Let us understand how these equations are generalized.
Assume that the family of curves has the equation of the form whose

envelope is to be estimated,
F (x, y, α) = 0 …(9)

Now consider any two members of the family of curves whose equations
are,

F (x, y, α) = 0 …(10)
And F (x, y, α + δα) = 0 …(11)
It is obvious that the points of intersection of the Equations (10) and (11)

satisfies the equation of the form,
F (x, y, α + δα) – F (x, y, α) = 0
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Or, (F (x, y, α + δα) – F (x, y, α)) / δα = 0
Continuing to limits as ‘δα’ tends to ‘0’, i.e., taking limit as ‘δα→ 0’, it is

observed that the limit position ‘P’ of the specified point is common to the Equations
(10) and (11) which satisfy the equation of the form,

…(12)

However, the coordinates of ‘P’ too satisfy the Equation (10), because P
lies on it.

Consequently, on eliminating ‘α’ between Equations (9) and (12) will provide
an equation of the form,

φ (x, y) = 0 …(13)
The Equation (13) is termed as the equation of the envelope.
Additionally, the following form of equations are termed as the parametric

equations for the envelope. The equation of envelope is obtained by eliminating
‘α’ between the equations.

F (x, y, α) = 0

Common Guidelines to Find Envelope

Step 1. Differentiate the equation with regard to the ‘variable parameter’ and
consider all the remaining measures as constants that are involved in the specified
equation.
Step 2. Elucidate the outcome or the result and also the given specified equation
for the family of curves for ‘x’ and ‘y’ by defining the parameter. The resultant
explanations signify the parametric equations of the envelope.
Definition of Variable Parameter: Any system of curves formed using this method
is termed as the family of curves, and the quantity ‘α’, which is constant for any
one curve but changes in passing from one curve to another curve, is termed as
variable parameter.
Example 3. Show that the involute of the specified circle having radius R is centered
at the origin, when the specified curve given by the following form of equations is
of the evolute,

ξ = R cos t,  η = R sin t
Solution: To prove that the involute of the circle having radius R is centered at the
origin, we have the form of equations of the evolute as,

ξ = R cos t,  η = R sin t
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These equations are termed as the parametric equations of the specified
circle having radius R and is centered at the origin.

Now using the Cartesian coordinates (ξ, η), we can write the equations for
the evolute as follows,

ξ2  +  η2 = R2

The involute of the specified circle will be of spiral shape, as shown in
Figure 5.8. Fundamentally, it defines the trajectory of some specific point of a
straight line, that rolls or moves alongside the circumference in specified direction.

Fig. 5.8 Involute

Example 4. Find the envelope for the equation y = mx + (a/m), where m is the
parameter.
Solution: We have the equation of the form,

 y = mx + (a/m) …(14)
Now, partially differentiate Equation (14) with respect to m to obtain the

equation,
0 = x – (a/m2)  ⇒  m2 = a/x …(15)

In order to obtain the required equation for the envelope, from Equations
(14) and (15) we will eliminate the parameter m.

On squaring Equation (14) we will have,
y2 = m2x2 + (a2/m2) + 2ax …(16)

Placing m2 = a/x in the above Equation (16) we obtain,
y2 = x2 (a/x) + a2 (x/a) + 2ax

⇒ y2 = 4ax …(17)
The resultant Equation (17) is the equation of the envelope which is a

parabola.
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Check Your Progress

4. Define the term curvature.
5. What is an evolute?
6. What is an envelope?

5.5 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. The tangent line or simply tangent to a plane curve at any given point is the
straight line that simply touches the curve at that point.

2. The normal to a curve at some particular point can be defined as the straight
line that passes through that point and is at right angles or perpendicular to
the tangent of the curve at that specified point

3. The angle of intersection of two curves is specified as the angle between the
tangents of the two curves at the point of intersection.

4. The term curvature is defined as the bending of curves at the different varied
points.

5. An evolute of a curve is the locus of all its centers of curvature.
6. An ‘Envelope’ can be defined as a ‘Curve’ that touches every single member

of the family of curves or lines.

5.6 SUMMARY

• The tangent line or simply tangent to a plane curve at any given point is the
straight line that simply touches the curve at that point.

• At a given point on a curve, the gradient of the curve is equal to the gradient
of the tangent to the curve.

• The normal to a curve is the line perpendicular to the tangent to the curve at
a given point.

• If two lines, with gradients m1 and m2 are at right angles then m1m2 = –1
• The equation of the tangent to the curve y = f(x) at the point (x, y) is as

follows,



Tangents, Curvature,
Envelopes and Evolutes

NOTES

Self-Instructional
Material 101

• The differential coefficient dy/dx at some particular point (x, y) on the curve
y = f(x) is equal to the tangent of the angle which the positive direction of
the tangent at ‘P’ to the curve makes with the positive direction of the x-
axis.

• While the tangent at some specific point is parallel to the axis of ‘x’, then it
can be defined that ‘ψ = 0’ specifically ‘tan ψ = 0’ and hence at that specific
point ‘dy/dx = 0’.

• While the tangent at some specific point is parallel to the axis of ‘x’, then it
can be defined that ‘ψ = 0’ specifically ‘tan ψ = 0’ and hence at that specific
point ‘dy/dx = 0’. Alternatively, when the tangent is parallel to the axis of ‘y’
or it is perpendicular to the axis of ‘x’ then we can state that at the stated
point, ψ = π/2

• The equation of normal for the specified curve at the point ‘P’ is of the
form,

• θ = tan– 1(m1 – m2) / (1 + m1 m2), m1 = tan ψ1 and  m2 = tan ψ2

• An ‘Envelope’ can be defined as a ‘curve’ that touches every single member
of the family of curves or lines.

• An ‘Evolute’ are the envelope of the normals to the specified curve. It can
also be assumed as the ‘locus of the centres of curvature’.

5.7 KEY WORDS

• Tangent: The tangent line to a plane curve at a given point is the straight
line that “just touches” the curve at that point.

• Normal line: The normal line is defined as the line that is perpendicular to
the tangent line at the point of tangency.

• Angle of intersection: The angle of intersection of two curves is the angle
between their tangent vectors at that point.

• Gradient: The gradient is a multi-variable generalization of the derivative.
While a derivative can be defined on functions of a single variable, for
functions of several variables.
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5.8 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short Answer Questions

1. Find the equation of the tangent for the curve y = f(x) at the specified points
(x1, y1),

2. Find the equation of the tangent for a curve in the form of parametric Cartesian
x = f(t) and y =  φ(t).

3. How is tangents parallel to coordinate axes?
4. Define the Evolute and Involute.

Long Answer Questions

       1. Derive the equation of normal for the curve y = f(x).
2. Find the angle of intersection of the curves x = 3 + y2  and y = 4 – x2.
3. Explain working method to find envelope and involutes.
4. Discuss the parametric equations for the envelope.
5. Find the equation of the normal lines to the curve x2 – y2 = 4 which are

parallel to the line x + 3y = 4.
6. Find the envelope of the family of lines given by

7. Briefly describe envelops.
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UNIT 6 INTEGRATION

Structure
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6.5 Key Words
6.6 Self Assessment Questions and Exercises
6.7 Further Readings

6.0 INTRODUCTION

In this unit, you will learn about integration by the method of substitution. Using the
fundamental theorem of calculus often requires finding an antiderivative. Therefore,
integration by substitution is an important tool in mathematics. The idea of this
method is to define a new variable which will allow the difficult starting integrand
to be changed from the old variable to a new integrand which is in terms of the
new variable. Integration by substitution is the counterpart to the chain rule for
differentiation.

6.1 OBJECTIVES

After going through this unit, you will be able to:
• Evaluate an integral by making a substitution
• Identify appropriate substitutions to carry out integration

6.2 INTEGRATION – SUBSTITUTION METHODS

In calculus, the term integration is referred as the method of computing an
integral, and the approximation or estimation of an integral is referred as the
numerical integration. The integral of a function is approximated with regard
to ‘x’, i.e., estimating an area from the curve to the x-axis. Integration process is
specifically used for finding or approximating central points, areas, volumes, etc.

Usually, the integral is also sometimes termed as the anti-derivative, since
integration is the reverse process of differentiation, i.e., “Integration
Reverses the Act of Differentiation”. For example, differentiating x3 provides
3x2 whereas integrating 3x2 provides x3.
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Characteristically,
Differentiation → Approximates the Slopes of Curves.
Integration → Approximates the Areas Under Curves.
Precisely, an integral can be defined as a mathematical object which is

uniquely interpreted either as an area under the curve or as a generalization of area
(Refer Figure 6.1). Therefore, the integrals and the derivatives are defined as the
essential objects of calculus.

Fig. 6.1  Area Under Curve

Figure 6.1 illustrates the area under the curve that is to be approximated
between,

(a, b) = 

Terminology and Notation

This notation is read as the INTEGRAL of ‘f’ from ‘x = a’ to ‘b’.
Following are some common notations that are used for computing integration.

Definite and Indefinite Integrals

The integrals are of two types, indefinite and definite.
Indefinite Integral: When it is not definite or specified how to start and end the
process of integration then the integral is termed as ‘indefinite integral’.
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For example, the following is the indefinite integral which is termed as the
‘function of x’.

Definite Integral: When it is definite or specific that how to start and end the
process of integration, i.e., the upper and lower limits of integration (b and a)
are defined then the integral is termed as ‘definite integral’.

For example, the following is the definite integral which is termed as the
‘number’.

6.2.1 Integration by Substitution

In calculus, fundamentally the integration by substitution method is a specific
method used to find integrals and is also sometimes termed as u-substitution or
the reverse chain rule.

In this method, the integration is performed by first making a substitution,
i.e., to change the variable and the integrand.

Typically, using the substitution method an unfamiliar integral is defined into
the form that can be evaluated, i.e., substitution provides a simple integral involving
the variable u.
Basic Notion: When u = f(x), then du = f ′(x) dx

Substitution Rule

Where u = g(x).
The symbol ‘∫’ is termed as an integral sign.
Following are the five significant steps that are used in integration by

substitution method.
Step 1: Select a new variable u
Step 2: Define the value dx
Step 3: Make the substitution
Step 4: Integrate resultant integral
Step 5: Return to the initial variable x
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Let us understand the concept with the help of the following example.

Integration by Substituting u = ax + b

Example 1. Evaluate .

Solution: Follow the steps discussed above.
Step 1: Select a substitution function u

   The substitution function is then u = 2x + 3
Step 2: Define the value dx

2x + 3 = u
(2x + 3)′ dx = du
2 dx = du
dx = 1/2 du

Step 3: Make the substitution as follows

Step 4: Integrate resultant integral

  Here ‘C’ is a constant for integration.
Step 5: Return to the initial variable x

Therefore, the answer is, 

Now assume that we have to find the integral,

 …(1)

According to the rule of integration for the powers of variable, the power
of a variable can be increased by ‘1’ and then divided by the new increased
power.

In the Equation (1), the integral has a power ‘5’ whereas the integrand
has a complex form as it has the term ‘x + 4’. To evaluate the integral, substitution
is made, i.e., the integrand is changed into the simpler form as ‘u5’. Additionally,
the term ‘dx’ too will be substituted appropriately. Hence, we take ‘u = x + 4’.
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In the differential term, we can state that,

Since,u = x + 4
Then, (du/dx) = 1
And thus, du = dx
Now on substituting the values for both ‘x + 4’ and ‘dx’ in the Equation (1),

we obtain the equation of the form,

The resultant integral is then evaluated which provides the equation of the
form,

(u6/6) + C  … (2)
Where ‘C’ is a constant for integration.
Now we substitute the values of Equation (2) in the original variable ‘x’ in

the Equation (1), i.e., ‘u = x + 4’ to have the following expression,

  =   ((x + 4)6/6) + C

This proves the method of integration by substitution.

6.2.2 Trigonometric Substitution

To evaluate an integral using trigonometric substitution let us first recollect the
following standard trigonometric notations of trigonometric functions.

Trigonometric Functions

sin =    Opposite/Hypothenuse
cos =    Adjacent/Hypothenuse
tan =    Opposite/Adjacent =   sin/cos
sec =    Hypothenuse/Adjacent =    1/sin
cosec =    Hypothenuse/Opposite =    1/cos
cot =    Adjacent/Opposite =    1/tan = cos/sin

Trigonometric Substitutions

Following are the standard integrands and notations for trigonometric substitutions.
Since we are using trigonometric functions hence we will use θ notation instead
of u-notation.
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Integrand Substitution Differential

x = a sin θ dx = a cos θdθ

x = a tan θ dx = a sec2 θdθ

x = a sec θ dx = a sec θ tan θdθ

When we substitute x = a sin θ, then sin θ = x/a.
Therefore, the opposite side to ‘θ’ of the triangle is labelled as ‘x’ while the

hypothenuse is labelled as ‘a’, as shown in Figure 6.2. The remaining side, i.e., the
adjacent, is defined on the basis of Pythagoras Theorem which states that,

a2 + b2 = c2

Hence the adjacent will have the integrand of the form, , as
shown in Figure 6.2.

Similarly we define the substitutions for remaing two cases, i.e.,
for and  as shown in Figure 6.2.

Fig. 6.2 Substitutions

Integrals Containing

The integrals containing are integrated as follows.
Basically,  essentially correspond to the hypotenuse of the right angled
triangle as shown in Figure 6.3.

Fig. 6.3 Integrals Containing

Hence,    x = a tan θ
 dx = a sec2 θ dθ

= a sec θ
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Example 2. Evaluate the indefinite integral of the form,

Solution: Follow the steps given below.
Use the triangle substitution we have,

a2 = 4     or     a = 2
Then integrating we have,

Now, we will convert the obtained answer to the function of ‘x’. Refer
Figure 6.3 and define that,

sin θ = 

Consequently,

  

Integrals Containing

The integrals containing are integrated as follows. Basically,, ‘x’

essentially correspond to the hypotenuse of the right angled triangle as shown in
Figure 6.4.
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Fig. 6.4 Integrals Containing

Hence,
  x = a sec θ
dx = a sec θ tan θdθ

= a tan θ

Example 3. Evaluate the indefinite integral of the form,

Solution: Follow the steps given below.

Since the integral  contains the form , hence we

will substitute as follows,
x = a sec θ  = 4 sec θ

Therefore, we will have the triangle as shown in the following Figure 6.5.

x = 4 sec θ

Fig. 6.5 Triangle Showing Integrals

Analysing this we have,

 = 4 tan θ

But, as per the standard formula,
dx = 4 sec θ tan θ dθ

Subsequently, the integral will have the form,
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Applying the trigonometric integrals rules and the identity,
sec2 = tan2 + 1

The integral can be evaluated using the substitution,
u = tan θ

Therefore,
du = sec2 θ dθ

Hence,

  

From the Figure 6.5 triangle it is obvious that,

tan θ = / 4

Therefore, the integral will become,

Integrals Containing

The integrals containing are integrated as follows. Basically,, ‘a’ essentially
correspond to the hypotenuse of the right angled triangle as shown in Figure 6.6.
One side of the triangle is and the other side will be ‘x’.
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Figure 6.6 Integrals Containing

Hence,
  x = a sin θ
dx = a cos θ dθ

= a cos θ

Example 4. Evaluate the indefinite integral of the form,

Solution: Follow the steps given below.

We will consider the form 4 – x2 as, to be used as integral of triangle
as shown in Figure 6.7 .

Fig. 6.7 Triangle with Side

Therefore,
  x = 2 sin θ
dx = 2 cos θ dθ

       = 2 cos θ
The integral can be expressed as follows.
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Some More Significant Integration Formulas

The following formulas are specifically used in the integration by substitution method
to simplify integrals with reference to trigonometric identities for a definite series of
‘u’ and in the approximation of ‘du’.

1. When an integral includes the form [u2 – a2]1/2, then substitute for ‘u’
such that   u = a cosec θ, consequently [u2 – a2]1/2 has the form,

[a2 cosec2 θ – a2]1/2 = [a2 (cosec2 θ – 1)]1/2

           = [a2 cot2 θ]1/2

           = a cot θ
Which follows the identity that (du/dθ) (a cosec θ) = – a cosec θ cot θ
2. When an integral includes the form [u2 – a2]1/2, then substitute for ‘u’

such that   u = a sec θ, consequently [u2 – a2]1/2 has the form,
[a2 sec2 θ – a2]1/2 = [a2 (sec2 θ – 1)]1/2

        = [a2 tan2 θ]1/2

        = a tan θ
Which follows the identity that (du/dθ) (a sec θ) = a sec θ tan θ
3. When an integral includes the form [u2 + a2]1/2, then substitute for ‘u’

such that   u = a tan θ, consequently [u2 + a2]1/2 has the form,
[a2 tan2 θ + a2]1/2 = [a2 (tan2 θ + 1)]1/2

        = [a2 sec2 θ]1/2

        = a sec θ
        = a (1/(cos2 x))

Which follows the identity that (du/dθ) (a tan θ) = a sec2 θ
4. When an integral includes the form [a2 – u2]1/2, then substitute for ‘u’

such that   u = a sin θ, consequently [a2 – u2]1/2 has the form,
[a2 – a2 sin2 θ]1/2 = [a2 (1 – sin2 θ)]1/2

        = [a2 cos2 θ]1/2

        = a cos θ
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Which follows the identity that (du/dθ) (a sin θ) = a cos θ
Example 5. Evaluate the indefinite integral of the form,

Solution: Follow the steps given below.
Consider that,   u = 

Hence, du = ½ (x + 4) – 1/2 dx
And,   x = u2 – 4
Subsequently,

=  +” 2 ((u2 – 4)2 + (u2 – 4)) du

 = +”  (2 u4 – 10 u2 + 8) du
= 2/5 (u5) – 10/3 (u3) + 8u + C
= 2/5 (x + 4)5/2 – 10/3 (x + 4)3/2 + 8 (x + 4)1/2 + C

Thus, the integral is evaluated using substitution.

Check Your Progress

1. What are indefinite integrals?
2. What are definite integrals?

3. Evalute 

4. Evalute 

6.3 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. When it is not definite or specified how to start and end the process of
integration then the integral is termed as ‘indefinite integral’.

2. When it is definite or specific that how to start and end the process of
integration, i.e., the upper and lower limits of integration (b and a) are defined
then the integral is termed as ‘definite integral’.

3. .

4. log x.



Integration

NOTES

Self-Instructional
Material 115

6.4 SUMMARY

• The integral of a function is approximated with regard to ‘x’, i.e., estimating
an area from the curve to the x-axis. Integration process is specifically used
for finding or approximating central points, areas, volumes, etc.

• Integral of ‘f’ from ‘x = a’ to ‘b’ : .

• The integrals are of two types, indefinite and definite.
• Indefinite integral which is termed as the ‘function of x’.

• The following is the definite integral which is termed as the ‘number’.

• Substitution Rule:

• According to the rule of integration for the powers of variable, the power of
a variable can be increased by ‘1’ and then divided by the new increased
power.
Some Significant Rules

• Integrand Substitution Differential
x = a sin θ dx = a cos θdθ

x = a tan θ dx = a sec2 θdθ

x = a sec θ dx = a sec θ tan θdθ

6.5 KEYWORDS

• Integral: An integral is a mathematical object that can be interpreted as an
area or a generalization of area.

• Integration: The finding of an integral or integrals.
• Derivative: The derivative is a way to show rate of change: that is, the

amount by which a function is changing at one given point.
• Differentiation: The process of finding the derivative, or rate of change,

of a function.
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6.6 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short Answer Questions

1. Evaluate 
2. Evaluate 
3. Evaluate 
4. Evaluate 

Long Answer Questions

1. Evaluate the indefinite integral of the form,

2. Evaluate the indefinite integral of the form,

3. Evaluate the indefinite integral of the form,

4. Evaluate the indefinite integral of the form,

5. Discuss the process of integration with help of examples for.
(a) Integration by Substitution
(b) Trigonometric Substitution

6.7 FURTHER READINGS
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UNIT 7 INTEGRATION –
DEFINITE INTEGRALS

Structure
7.0 Introduction
7.1 Objectives
7.2 Integration – Definite Integrals and their Properties

7.2.1 Evaluation of Definite Integral as the Limit of a Sum
7.2.2 Fundamental Theorems of Calculus – Area Function
7.2.3 Properties of Definite Integrals

7.3 Integration by Parts
7.4 Reduction Formulae
7.5 Bernoulli’s Formula
7.6 Answers to Check Your Progress Questions
7.7 Summary
7.8 Key Words
7.9 Self Assessemnt Questions and Exercises

7.10 Further Readings

7.0 INTRODUCTION

In this unit, you will expand your knowledge on definite integral which is an integral
of a function with limits of integration. There are two values as the limits for the
interval of integration. One is the lower limit and the other is the upper limit. It does
not contain any constant of integration. Further, you will learn about their properties.
A very important method – integration by parts, is discussed in this unit. This is one
of the most useful integration method which is applied in a variety of situations. It
is useful for the integrals where the integrates are functions, any of which may be
algebraic, exponential, trigonometric and logarithmic. This unit also introduces you
to the concept of integration by reduction formula. Integration by reduction formula
is a or procedure of integration, in the form of a recurrence relation. It is used
when an expression containing an integer parameter, usually in the form of powers
of elementary functions, or products of transcendental functions and polynomials
of arbitrary degree, can’t be integrated directly. In the end, this units discusses the
notion of Bernoulli’s formula.

7.1 OBJECTIVES

After going through this unit, you will be able to:
• Understand the concept of definite integrals
• Know about properties of definite integrals
• Learn the method of integratin by parts
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• Deduce reduction formula for various functions
• Use Bernoulli’s formula to integrate a function

7.2 INTEGRATION – DEFINITE INTEGRALS AND
THEIR PROPERTIES

Definite integration is a significant and an essential constituent of integral calculus.
Both the integrations – indefinite and definite are interrelated processes.
Fundamentally, the indefinite integration provides the basis for definite integral.
As already discussed in Unit 6, following is the standard definition of definite
integral.

Definitions of Definite Integral

1. The definite integral of a function has a unique value. A definite integral is
denoted by,

In the above notation, ‘a’ is termed as the lower limit of the integral while
‘b’ is termed as the upper limit of the integral.

2. When it is definite or specific that how to start and end the process of
integration, i.e., the upper and lower limits of integration (b and a) are
defined then the integral is termed as ‘definite integral’. A definite integral
is denoted by,

3. Principally, the definite integral of the form is evaluated
either as,

1. The limit of the sum.
Or as,

2. The anti-derivative ‘F’ for the interval [a, b].
When we consider the case as anti-derivative ‘F’ for the interval [a, b],
then its evaluated value is defined as the difference between the values of
‘F’ at the specified end points, to be precise F(b) – F(a).

7.2.1 Evaluation of Definite Integral as the Limit of a Sum

Assume that ‘f’ is a continuous function that is specified on close by interval [a, b].
Let the function has all non-negative values. In this case the graph of the function
will be a curve above the x-axis.
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The definite integral certainly will be , which is the specified
area bounded by the curve ‘y = f(x)’ with x = a, x = b on the x-axis. For estimating
the area between the curve, we evaluate the segment PRSQP along with,
x = a, x = b and the x-axis (Refer Figure 7.1).

Fig. 7.1 Area Between the Curve

The interval [a, b] is further divided into ‘n’ number of equivalent subintervals
which are represented or denoted by,

 [x0, x1], [x1, x2], . . . . . . . . ., [xr – 1, xr], . . . . . . . , [xn – 1, xn]
Here,

x0 = a,     x1 = a + h,     x2 = a + 2h,  . . . . . . . ,     xr = a + rh
And,

xn = b = a + nh or n = (b – a)/h
As per, n  → ∞,   h  →  0.
The segment PRSQP is defined as the sum of n subsegments and subsegment

is defined on the basis of subintervals [xr – 1, xr], where r = 1, 2, 3, 4, . . . . , n.
From Figure 7.1, we can state that,
ABLC (Area of the Rectangle)  <  ABDCA (Area of the Segment)  <

ABDM (Area of the Rectangle)        …(1)
Evidently, since,

[xr – xr – 1] →  0,   specifically as,   h  →  0
Consequently, with this condition all the three regions that are specified in

the Equation (1) are considered almost equivalent to each other.
Accordingly, we can define the sum of intervals as follows.
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…(2)

And, …(3)

The term ‘sn’ is used to represent the sum of the regions for all the lower
rectangles while the term ‘Sn’ is used to represent the sum of the regions for all the
upper rectangles considered over the subintervals, [xr – 1, xr], where r = 1, 2, 3, 4,
. . . . , n.

Now, taking into account the Equation (1) inequality we can define the
following state for an arbitrary or random subinterval [xr – 1, xr],

sn  <  Area of the Segment PRSQP  <  Sn …(4)
When ‘n  →  ∞’ turn out to be narrow then we assume that the limiting

values of Equations (2) and (3) will be similar or equivalent in both the conditions.
Hence, under this situation the limiting value which is common will be the required
segment under the curve.

Symbolically, the common limiting value can be expressed as,

    = Area of the Segment PRSQP

    …(5)

The area specified under the segment PRSQP can also be defined as the
limiting value of some other specific area which exists between the rectangles
either below the stated curve or above the stated curve. We limit the condition
and will consider only those rectangles which are of height equivalent to the stated
curve and are at the left side edge of every subinterval.

Therefore, in limit form the Equation (5) can be expressed as,

Or,

…(6)

Here,   as n  →  ∞.

Precisely, the Equation (6) is defined as the definition of the definite integral
as the ‘limit of sum’.
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Definition. The value of the definite integral of a function for some precise interval
is specifically determined on the basis of function and the interval, but it will not
consider the variable of integration selected for representing the independent
variable.

Therefore, if the independent variable is symbolized through ‘t’ or ‘u’ in
place of ‘x’ then the integral of Equation (5),

Will be represented as,

Subsequently, the variable of integration will be termed as a ‘dummy
variable’.
Example 1. Evaluate the given definite integral of the form as the limit of a sum,

Solution: Follow the steps given below.
According to the definition,

For  h = (b – a)/n.
Hence we can state that,
a = 0,     b = 2,     f(x) = x2 + 1,       h = (2 – 0)/n = 2/n
Therefore,
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= 2  [1 + (4/3)] = 14/3

7.2.2 Fundamental Theorems of Calculus – Area Function

The fundamental theorems of calculus defines how to evaluate the area of the
segment that is bounded by the curve y = f(x).

Area function can be defined with regard to the Equation (5),

It states the area of the segment that is bounded through the curve y = f(x),
the coordinates x = a and x = b on the x-axis. Consider that ‘x’ is a specific point
in the interval [a, b] as shown in Figure 7.2.

Then, will specifically represent the area that is on the left-
hand side of ‘x’ denoted as ‘A(x)’, as shown in Figure 7.2.

Fig. 7.2 Area Function

Consider that f(x) > 0 for x ∈ [a, b]. The area of the stated segment is
determined on the value of ‘x’, i.e., the area of the stated segment is a function of
‘x’ denoted by A(x).

Therefore, the function of ‘x’ denoted by A(x) is termed as the ‘Area
Function’ and is represented as equation,

…(7)
On the basis of Equation (7) the basic two fundamental theorems of integral

calculus can be stated as given below.
Theorem 1. Let ‘f’ be a continuous function on the closed interval [a, b] and let
A(x) be the area function. Then,

A′(x) = f(x), for all x ∈ [a, b]
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Theorem 2. Let ‘f’ be a continuous function defined on the closed interval [a, b]
and ‘F’ be the anti-derivative of ‘f’. Then,

Theorem 2 is considered as significant theorem of integral calculus as it
helps in evaluating the definite integral using anti-derivative.
Example 2. Evaluate the given definite integral of the form,

Solution: Follow the steps given below.
Consider that,

D = 

Because,

Hence, applying the Theorem 2 of integral calculus we obtain,
D = F (3) – F (2)
    = (27/3)  –  (8/3)
    = 19/3

Evaluation of Definite Integrals by Substitution Method

For evaluating the definite integrals using the substitution method follow the steps
given below.
Step 1. To evaluate the definite integral of the form by the substitution
method we first define it to the known indefinite integral form.
Step 2. Reduce the definite integral form to the indefinite integral form by substituting
‘y = f(x)’ or ‘x = g(y)’, i.e., the integer is without upper and lower limits.
Step 3. Now integrate the new obtained integrand with reference to new variable
but no need to mention or use the constant of integration.
Step 4. Again substitute for the new variable to obtain the answer in the form of
original expressions of the variable.
Step 5. Use this answer obtained in Step 4, to find the values for the specified
limits of the integral, i.e., evaluate the difference of values at the specified upper
limit and the lower limit.
Example 3. Evaluate the given definite integral of the form using substitution,
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Solution: Follow the steps given below.
Let,  t = x5 + 1 and then   dt = 5x4 dx

Hence,

       

Consequently,

  

   

    

7.2.3 Properties of Definite Integrals

Following are some significant properties of definite integrals using which we can
easily evaluate the definite integrals.

Property 1. 

To evaluate we substitute as ‘x = t’.

Property 2. 

Specifically, 

Assume that ‘F’ be the anti-derivative of ‘f’.
As per the Theorem 2 of integral calculus,

When a = b then we can state that,
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Property 3. 

Assuming that ‘F’ be the anti-derivative of ‘f’. Then we can state,

…(8)

       …(9)

…(10)

We add Equations (9) and (10) to obtain,

Hence the Property 3 is proved.

Property 4. 

Consider that t = a + b – x. Thus, dt = – dx.
While x = a, t = b and also when x = b, t = a.
We can state the definite integral as,

 

           …..By Property 2

         …..By Property 1

Property 5. 

Consider that, when t = a – x, then dt = – dx.
While x = 0, t = a and also when x = a, t = 0.
The proof is similar to Property 4.

Property 6. 

Applying Property 3, we obtain,

Assume that,
t = 2a – x for the right-hand side second integral.

Thus, dt = – dx.
While x = a, t = a and also when x = 2a, t = 0 and precisely x = 2a – t.
Consequently, the right-hand side second integral has the form,



Integration –
Definite Integrals

NOTES

Self-Instructional
126 Material

  

   

Therefore,

Check Your Progress

1. How are definite integrals evaluated?
2. What does fundamental theorems of calculus define?
3. What are dummy variables?

7.3 INTEGRATION BY PARTS

In calculus and in mathematical analysis, integration by parts or partial
integration method is used for finding the integral of a product of functions
using expressions of the integral, specifically derivative and anti-derivative.

The rule is simply derived by integrating the product rule of differentiation.

Definitions

Following are the standrard definitions for the process integration by parts.
1. The integration by parts or partial integration process is specifically

used to find the integral of a product of functions.
If   u = u(x) and du = u′(x) dx
When   v = v(x)  and dv = v′(x) dx 

Then integration by parts states that,

Or more precisely,

2. Sometimes an integration is the product of ‘2’ functions which can be
integrated using Integration by Parts.
If u and v are functions of x, then using the product rule for differentiation we
obtain the following equation,
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Reorganizing the equation we have,

Integrating with reference to ‘x’ the following formula is obtained for
integration by parts:

Precisely, we use the function ‘u’ for the reason that ‘du/dx’ can be simple
than ‘u’. When in an equation the expression contains mix functions that are to be
integrated then we can define these mix functions as ‘u’ to make the integration
process easy, for example we can define ‘u’ as,

u = ln x,  u = xn, u = enx,   etc.
3. If ‘u’ and ‘v’ are any two differentiable functions of a single variable

‘x’ then through the product rule of differentiation,

When both the sides are integrated then we obtain,

       

Alternatively,    …(11)

Consider that,
u = f(x)    and     dv/dx = g(x)

Then,
du/dx = f ′(x)   and    v = +”g(x) dx

Consequently, we can express Equation (11) as follows,

Specifically,

Consider that if first function is ‘f’ and the second function is ‘g’ then we can
state,

Integral of the Product of Two Functions = [First Function] × [Integral
of Second Function] – Integral of [(Differential Coefficient of First Function)
× (Integral of Second Function)]
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Remember that integration by parts as product of functions can be applied
only to specific cases and is not applicable to all.

For example, integration by parts as product of functions will not evaluate
the expression of the form  because there is not any function which has
required derivative as
Example 4. Evaluate the given integral using integration by parts,

Solution: Follow the steps given below.
Consider that u = x  and dv = sin 2x dx.
Since u = x  then  du = dx.
On integrating dv = sin 2x dx gives,

 Now we substitute these expressions into the formula of integration by
parts as follows.

Substitute the following in the above expression,

u = x,    dv = sin 2x dx,    du = dx,    v 

We obtain,

Therefore,

 

 

Where K is a constant.
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7.4 REDUCTION FORMULAE

In integral calculus, the integration by reduction formula is a specific technique
or method of integration of the form recurrence relation.

Typically, a reduction formula is used to solve an integral by reducing it to
an easier integral form and then further reducing it to the more easier form, and so
on.

Definition. A reduction formula for a specified integral is an integral
of the form which is equivalent in form as the specified integral but of a lower
degree or order.

Characteristically, the reduction formula is used for evaluating those specified
integrals which cannot be approximated otherwise. The specified integral is
evaluated by repeatedly using the reduction formula.

Definition. For some specified integrals, both definite and indefinite,
typically the function to be integrated, i.e., the ‘integrand’ comprises of a product
of two functions, where one function contains an unspecified or indefinite integer
‘n’. To evaluate such a specified integral in expressions of similar analogous integral
we use the method integration by parts where ‘n’ is replaced by either (n – 1)
or at times by (n – 2). The correlation between these two integrals is termed as
‘reduction formula’. We can determine the original integral in terms of ‘n’ by
repeatedly using this reduction formula.

Definition. Reduction formulae are certain integrals which contain some
variable ‘n’ in addition to the standard variable ‘x’, generally obtained by means
of integration by parts. The notation In is used for denoting reduction formulae.

Following are some commonly used significant reduction formulae for
trigonometric integrals.

Specifically, we can state that,
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Reduction Formula for Sine

Reduction Formula for Cosine

Reduction Formula for Natural Logarithm

Let us understand the concept of reduction formula with the help of following
example in which an integral is solved by reducing it to the form of more easy
integral.

Let,

   

This expression is simplified with regard to integration by parts as follows.

 

      In = xnex – nIn–1

Thus, we obtain the above reduction formula.
Similarly, when,

    

Again this expression is also simplified with regard to integration by parts as
follows.

   

Applying the trigonometric identity tan2 (θ) = sec2 (θ) – 1, we obtain,

     
Rearrange or reorganize to obtain,

When we obtain n = 1 or n = 2 then we stop integrating, where ‘n’ is either
odd or even, respectively.
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Example 5. Evaluate the reduction formula for the given integral of the form,

 (Where n is a constant)

Solution: Follow the steps given below.

Use the form udv.
Selectu = (x2 + 1)n    and    dv = dx
Then du = n (x2 + 1)n–1 2x   and   v = x

Therefore,

Rearrange the expression to obtain,

Therefore, we obtain the following two recursive formulae.

11.

And,

Here Formula 1 is for positive ‘n’ while Formula 2 is for negative ‘n’.

7.5 BERNOULLI’S FORMULA

Bernoulli equation is termed as the nonlinear differential equations of the
first order and is represented as,

y ′ + a (x) y = b (x) ym

Here a (x)  and  b (x) are termed as the continuous functions.
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When m = 0, then the equation is defined as linear differential equation
while when m = 1 then the equation is defined as separable.

Generally, when m ≠ 0, 1 then the Bernoulli equation is converted to linear
differential equation using the method change of variable,

z = y1–m

The function z(x) will be defined as differential equation of the form,
z ′ + (1 – m) a (x) z = (1 – m) b (x)

Example 6. Evaluate the general solution of the equation y ′ –  y = y2 ex.
Solution: Follow the steps given below.

Assume that m = 2 for the specified Bernoulli equation and then apply the
substitution as follows.

z = y 1–m = 1/y
Differentiating the equations on both sides, considering ‘y’ in the right-hand

side expression as composite function of ‘x’, we have

Now the original differential equation is divided both sides by y2, we have,

Substituting z and z ′, we obtain,
 – z – z = ex

⇒ z ′ + z = – ex

Then obtain the linear equation for the specified function z(x). For solving
we apply the integrating factor as follows,

Consequently, the linear equation has the general solution as follows,

When we return to the function y(x), we have the following implicit
expression of the form,

This can be expressed as,
y (C – x) = ex
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Therefore,
y (C – x) = ex,     y = 0

Check Your Progress

4. Define integration by parts.
5. What is the reduction formula for Sine?
6. What is the reduction formula for natural logarithm?

7.6 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. The definite integral of the form is evaluated either as,

• The limit of the sum. Or as,
• The anti-derivative ‘F’ for the interval [a, b].

2. The fundamental theorems of calculus defines how to evaluate the area of
the segment that is bounded by the curve y = f(x).

3. The variable of integration will be termed as a ‘dummy variable’.
4. The integration by parts or partial integration process is specifically used to

find the integral of a product of functions. If u = u(x) and du = u′(x) dx,
when v = v(x) and dv = v′(x) dx. Then integration by parts states that,

5.

6.

7.7 SUMMARY

• The definite integral of a function has a unique value. A definite integral is
denoted by,

• Let ‘f’ be a continuous function on the closed interval [a, b] and let A(x) be
the area function. Then, A′(x) = f(x), for all x ∈ [a, b]

• Let ‘f’ be a continuous function defined on the closed interval [a, b] and ‘F’
be the anti-derivative of ‘f’. Then,
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•

•

•

•

•

•

• Integral of the product of two functions = [first function] x  [integral of
second function] – integral of [(differential coefficient of first function) x
(integral of second function)].

• A reduction formula for a specified integral is an integral of the form which
is equivalent in form as the specified integral but of a lower degree or order.

• Bernoulli equation is termed as the nonlinear differential equations of the
first order and is represented as, y ′ + a (x) y = b (x) ym. Here a (x)  and  b
(x) are termed as the continuous functions.

7.8 KEY WORDS

• Continuous function: a continuous function is a function for which
sufficiently small changes in the input result in arbitrarily small changes in the
output.

• Class interval: the size of each class into which a range of a variable is
divided.

• Anti-derivative: an antiderivative or indefinite integral of a function f is a
differentiable function F whose derivative is equal to the original function f.

7.9 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short Answer Questions

1. What do you understand by definite integrals?
2. Evaluate the given definite integral using anti-derivative,
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3. Prove that    

4. Define Bernoulli’s Formula.

Long Answer Questions

1. Explain the process of evaluating definite integral as the limit of a sum.
2. Evaluate the given definite integral of the form as the limit of a sum,

3. Evaluate the given definite integral of the form as the limit of a sum,

4. Evaluate the given definite integral of the form using substitution,

5. Evaluate the reduction formula for the given integral of the form,
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UNIT 8 DOUBLE AND TRIPLE
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8.2.1 Double Integrals
8.2.2 Triple Integrals
8.2.3 Properties of Double and Triple Integrals

8.3 Jacobian
8.4 Change of Order of Integration
8.5 Answers to Check Your Progress Questions
8.6 Summary
8.7 Key Words
8.8 Self Assessment Questions and Exercises
8.9 Further Readings

8.0 INTRODUCTION

As discussed in Units 6 and 7 that ‘Definite integration’ is an essential and important
constituent of integral calculus in which both the integrations – indefinite and definite
are interrelated processes. You have learned about the single integrals and how to
evaluate the function of one variable. In this unit, you will learn about double and
triple integrals or the multiple integral, i.e., about two and three variables,
respectively.

8.1 OBJECTIVES

After going through this unit, you will be able to:
• Understand the concept double integrals
• Describe the properties of double integrals
• Understand the concept triple integrals
• Describe the properties of triple integrals
• Use Jacobian transformation for changing variables in both the double and

triple integrals.
• Change the order of integration
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8.2 DOUBLE AND TRIPLE INTEGRALS AND
THEIR PROPERTIES

Definition of Double and Triple Integrals
1. Fundamentally, the multiple integral is defined as a ‘definite integral’ of a
function of more than one real variable, such as f(x, y) or f(x, y, z). Integrals
of a function of ‘two variables’ over a region in R2 are termed as ‘double
integrals’ while the integrals of a function of ‘three variables’ over a region
in R3 are termed as ‘triple integrals’.
As already discussed in previous Unit 7 that the definite integral of single (one)
variable of the positive function denotes the area of the specific region between
the graph of the stated function and the x-axis.
2. Similarly, the definite integral of two variables of the positive function
denotes the volume of the specific region between the surface that is defined by
the specified function on the three-dimensional Cartesian plane when z = f(x,
y) in addition to the plane that holds its domain.
3. Multiple integration of a function in ‘n’ variables, such as f(x1, x2, ….., xn)
over a ‘domain D’ is generally represented or denoted by nested integral signs
in the reverse order of execution followed by the function and the integrand
arguments in appropriate order. The domain of integration is either denoted
symbolically for every argument over each integral sign or it is abbreviated by a
variable at the rightmost integral sign as follows,

8.2.1 Double Integrals

Double integrals are the integrals using which we can find the function of two
variables. Following are some standard definitions of double integral.
Definitions.
1. A double integral has the form,

Here ‘R’ is termed as the region of integration, precisely the region in the (x, y)
plane. Fundamentally, the double integral evaluates the volume under the specified
surface z = f(x, y).
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2. The double integral that defines the limit of Riemann sums and which
approximates the volume under the graph of f(x, y) over the planar region R
has the form,

3. The double integrals are the iterated (repeated) integrals of the form,

      

For integrating over a specified rectangular region (rectangle a, b, c, d) on

the plane (x, y) precisely define that integrates ‘f’ over

the stated rectangle a ≤y ≤ b, c ≤ x ≤ d.
4. For a logically well-mannered function f(x, y) the volume can be calculated
by taking the limit of these approximations termed as the double integral. The
double integral of the function f(x, y) to be the limit over all possible or potential
divisions of domain ‘D’ can be defined as follows,

Consider that domain D is in ℝ 2. For the certain assumed division of D into ‘n’
specified regions state that in the above notation,

• Ai = The area of the ith region.
• (xi*, yi*) = Any point in the ith region.
• A = Area of the prime region.

Integral Laws for Double Integrals
The following integrals laws are applicable to double integrals only if the integrals
exist.
1. Sum Rule

            

2. Constant Multiple Rule
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3. Specific Rule: When the domain D is the union of two subdomains D1 and
D2 which are non-overlapping, then we use the notation,

        

Fubini Theorem
The Fubini Theorem states that, “If f(x, y) is continuous on a region R,
R = {(x, y) : a ≤ x ≤ b,   g1(x) ≤ y ≤ g2(x)}
R = {(x, y) : c ≤ y ≤ d,   h1(y) ≤ x ≤ h2(y)}”
Then,

Iterated Integrals
The iterated means repeated integrals. The functions of various different variables
can be integrated, for instance when the specified partial derivative is of the
form,

fx (x, y)  =  2xy
then consider ‘y’ as constant and integrate with regard to ‘x’. On integrating we
have,
Integrating with regard to x,

Holding y as constant,

Constant y is factored,

Since anti-derivative of 2x is x2 hence,
  = y(x2)  +  C(y)

Now C(y) being function of y we have,
 = x2 y  +  C(y)

Here, C(y) being function of y is termed as ‘constant of integration’.
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In the same way, we can hold ‘x’ as constant and integrate with regard to ‘y’.
Both the notations are represented as follows,

Evaluation of Double Integrals
The evaluation of double integral is done in stages as stated below. To evaluate the
simplest form of region R for a specified rectangular surface is given as,

1. Estimate the limits of integration if not specified.
2. Estimate the inner integral for characteristic ‘y’.
3. Estimate the outer integral.

Double Integrals over General Regions: To evaluate the double integral over
specified regions follow the steps given below.

1. Set the double integrals for the regions which are not of rectangular shape.
2. Evaluate the integrals for the bounds or limits containing variables.
3. Define +edy as the outer integral.
4. Evaluate the change of bounds or limits.

Evaluating Double Integrals over General Regions
The double integral can be evaluated for the following two precise regions.
Type 1 Region R: Consider that the Region R is bounded by x = a, x = b, y =
p(x) and y = q(x) when a < b and p(x) < q(x) for all x ∈ [a, b] subsequently the
double integral with regard to Fubini Theorem is represented as,

Type 2 Region R: Consider that the Region R is bounded through the graphs of
the specified functions x = u(y), x = v(y), y = c, y = d on condition that c < d and
u(y) < v(y) for all y ∈ [c, d] subsequently the double integral over the region
‘R’ is stated using the iterated integral with regard to Fubini Theorem is
represented as,
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Example 1. Evaluate the given double integral of the form,

Solution: Follow the steps given below.
Here the given inner integral when ‘y’is considered as constant is given as,

Integral (Considering ‘y’ as Constant),

 = (6 + 72) – (3 + 18) = 57
Example 2. Evaluate the given double integral of the form,

Solution: Follow the steps given below.
The given integral is,
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Evaluating Double Integral for Area and Volume
To evaluate the area under double integral follow the ‘Area Definition’ that is given
below.
Definition for Area. Given a function f : [a, b] ⊆ R → R of any single variable
‘x’ which is continuous and nonnegative on a closed bounded interval [a, b] on
the x-axis. To evaluate the area of the plane region that is enclosed between the
curve y = f(x) and the interval [a, b], we use the notation,

      …(1)

In the above Equation (1) the expression on the extreme right-hand side uses the
‘limit as N → ∞’ for encapsulating the procedure through the number of intervals
of [a, b] are increased such that the lengths of the subintervals approaches ‘0’.
To evaluate the volume under double integral follow the ‘Definition – Volume Under
a Surface’ that is given below.
Definition – Volume Under a Surface. When a function f : D ⊆ R2 → R of
any two variables ‘x’ and ‘y’ is defined such that ‘f’ is continuous and  nonnegative
on the specific region ‘D’ on the xy-plane, then the volume of the portion say
‘E’ that is enclosed or bounded between the surface z = f(x, y) and the region
‘D’ is defined by the notation,

 …(2)

In the Equation (2) the expression on the right-hand side uses ‘limit as N → ∞’
which indicates or specifies the method or procedure through which the number
of subrectangles of the specified rectangle ‘R’ that encloses the region ‘D’ are
increased such that both the length and the width of the subrectangles
approaches ‘0’.
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As per the definition, ‘f’ is defined as nonnegative on the specified region ‘D’.
When ‘f’ is defined as continuous on the specified region ‘D’ and includes both
positive and negative values then the limit is represented as,

               …(3)

The limit defined in the Equation (3) will then not represent volume between
the specified region ‘D’ and the surface z = f(x, y), relatively it will specify the
‘difference of volumes’, i.e., the volume between region ‘D’ and the portion
or slice of the surface that is below the xy-plane. This is termed as the ‘net
signed volume’ between the specified region ‘D’ and the surface z = f(x, y).
The double integral of the function  f(x, y) over the region ‘D’ is expressed as
the limit of the Riemann Sums (if exists), which is obtained by extension as the
sums in Equation (3) termed as the Riemann sums, and is represented by the
equation of the form,

…(4)

When ‘f’ is continuous and nonnegative on the region ‘D’ then the formula for
Volume of the portion E or V(E) expressed in the Equation (2) will be denoted
as follows,

                                                          …(5)

Definition. When ‘f’ contains both positive and negative values on the specified
region ‘D’, then the positive value states that volume is more above the region
‘D’ as compared to below of the region ‘D’ for the double integral of ‘f’ over
the region ‘D’, while the the negative value states that volume is more below
the region ‘D’ as compared to above of the region ‘D’ for the double integral
of ‘f’ over the region ‘D’, and the value ‘0’ states that for the double integral
of ‘f’ over the region ‘D’ the volume above and below the region ‘D’ will be
equivalent or same.
This holds the following theorem.
Theorem. When f(x, y) is considered continuous in the bounded region ‘D’
then the following notation always exist,

…(6)
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For example, when f(x, y) ≥ 0 in the specified region ‘D’ then we can interpret
the double integral as the volume of the cylinder (Refer Figure 8.1) between
the surface z = f(x, y) and the specified region ‘D’.

Fig. 8.1 Cylinder Between the Surface z = f(x, y) and the Specified Region ‘D’

Alternatively, we can also define the volume under the specified surface z = (x,
y) above the stated rectangular region ‘R’ is represented as follows,

  …(7)

Example 3. Evaluate the volume of the specified solid bounded region above
with regard to the plane z = 4 – x – y and below with regard to the rectangle R
where,

R  =  {(x, y) : 0 ≤ x ≤ 1 and 0 ≤ y ≤ 2}
Solution: Follow the steps given below.
As stated above in the Equation (7), we can define the volume under some specified
surface z = (x, y) above the specified rectangular region ‘R’ as follows,

Given is, z = 4 – x – y, i.e.,  f(x, y) = 4 – x – y
For, 0 ≤ x ≤ 1 and 0 ≤ y ≤ 2
Putting the values we obtain the double integral for volume as follows,
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On integrating,

       

         

= (7 – 2) – (0) = 5
In this example of double integrals all the specified four limits of integration are
considered as constant because the shape of the region of integration is rectangle.
Example 4. Evaluate the area of the rectangular region R given below in Figure
8.2 using an iterated integral.

Fig. 8.1. Area for Rectangular Region

Solution: Follow the steps given below.
Figure 8.1 represents the region which is simple both vertically and horizontally,
therefore we will use the order of integration by selecting the order ‘dy dx’ for
obtaining the given equations.
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Integrating with regard to ‘y’ we obtain,

Integrating with regard to ‘x’ we obtain,

Area of the Rectangular Region R is,
 = (d – c) (b – a)

8.2.2 Triple Integrals

In this section we will discuss about triple integral and the method of evaluating the
triple integrals. Fundamentally, the triple integrals are defined as the integrals
over a three-dimensional region.
Definitions of Triple Integral
1. Integration of a function of three variables, say w = f(x, y, z) over a three-
dimensional region R in xyz-space is termed a triple integral and is denoted
as follows,

2. If ‘f’ is continuous over a bounded solid region ‘Q’, then the triple integral
of ‘f’ over ‘Q’ is defined as follows provided that the limit exists,

        …(8)

The volume of the solid region ‘Q’ is denoted as follows,

…(9)

3. Consider that a domain ‘D’ is specified in the three dimensional space and
a function f(x, y, z), then the region ‘D’ can be subdivided into following regions:

• Vi  =  Volume of the ith region.
• (xi*, yi*, zi*)  =  Points in the ith region.
• V  =  Volume of the largest region.
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The triple integral of ‘f’is then defined over ‘D’ with regard to the following
given limit over all the possible divisions of ‘D’:

…(10)

4. Triple Integral according to Fubini’s Theorem: As per the Fubini’s
Theorem the triple integral is evaluated using the equation of the form,

            …(11)

Here dx, dy and dz can follow any order for integration.
Fundamentally, the value of the triple integral may depend on the order of
integration but the Fubini’s Theorem ensures that the order of integration
will not be significant when the function is continuous.
Consequently, as per the Fubini’s Theorem, “If f(x, y, z) is continuous on D,
when D = {(x, y, z) : a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x), h1(x, y) ≤ z ≤ h2(x, y)}, then
we have the equation of the form given below. In addition, all the other orders of
integration too will return the equivalent end result”.

   

5. The term triple integrals state that these are the integrals over a three-
dimensional region. For computing the volumes follow the given method.
For approximating the volume in three dimensions, divide the three-
dimensional region into small rectangular boxes such that each is defined as,
 ∆x × ∆y × ∆z with volume  ∆x ∆y ∆z
Adding all of them and taking the limit the following integral is obtained:

…(12)

When the limits are constant then the volume for the rectangular box is easily
computed.
Example 5. Evaluate the given triple integral of the form,
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Solution: Follow the steps given below for evaluating the triple integral.
We have,

Integrating we have,

   =  2
Therefore,

Example 6. Evaluate using the Fubini’s Theorem the given triple integral of the
form,
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Solution: Follow the steps given below for evaluating the triple integral using the
Fubini’s Theorem.
Given is integral,

   

Integrating we obtain,

 =  1/48

Evaluation of Triple Integral
Follow the steps given below to evaluate any given triple integral.
Step 1. For evaluating the triple integral, the region of integration is determined.
Step 2. Select the order of integration for determining the limits of integration. The
specified region can be divided into several subregions based on the selected
order of integration.
Step 3. Precisely, when the order of integration is dz dy dx or dz dx dy then we
consider the xy-plane, when the order of integration is dy dz dx or dy dx dz then
we consider the xz-plane, and when the order of integration is dx dz dy or dx dy
dz then we consider the yz-plane.
Step 4. The bounds of the outer variable has to be constant, while the bounds of
the middle variable must be determined by the outer variable but the bounds of the
inner variable will be determined by both the other variables.
Step 5. Finally, evaluate the each specified iterated integral in the form of single-
variable integral as the appropriate variable.
Step 6. Consider all other variables of integration as constant excluding the current
variable of integration.
Theorem for Evaluating the Iterated Integrals
The Fubini’s Theorem defines the specified region which is stated as simple with
regard to the order of integration dz dy dx.
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Theorem. Let ‘f’ be continuous on a solid region ‘Q’ defined by,
a  ≤ x  ≤ b,  h1(x)  ≤  y  ≤  h2(x),  g1(x, y)  ≤  z  ≤  g2(x, y)

Here h1, h2, g1 and g2 are considered as the continuous functions. Therefore,
we obtain the following equation:

           

 …(13)
For evaluating the given triple iterated integral of the specified order of integration
dz dy dx, both ‘x’ and ‘y’ are considered as constant for integrating the innermost
integral. Then, for the second integration ‘x’ is considered constant.
Example 7. Evaluate the given triple iterated integral of the form,

Solution: Follow the steps given below for iterating the triple iterated integral.
Consider both ‘x’ and ‘y’ constant for the first integration and then integrate the
given triple integral with regard to ‘z’.
We have,

Integrating we have,

 

For the second integration integrate with regard to ‘y’ considering ‘x’ as constant.
Integrate the given equation second time,

Integrating we have,
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Now integrating with regard to ‘x’ we have,

    

» 65.797

8.2.3 Properties of Double and Triple Integrals

Following are the standard properties of double and triple integrals.
Properties of Double Integrals
Different properties that are defined for double integrals are also equivalent or
analogous to the single integrals. These are considered as significant properties
and are used for calculating the double integrals.
Property 1: Homogeneous Property
Definition. Assume that if the specified function ‘f’ is integrable over a closed
region ‘R’ and ‘k’ is an arbitrary constant then ‘kf’ is integrable over the region ‘R’
and we define the equation,

Property 2: Additive Property
Definition. Assume that if the functions ‘f’ and ‘g’ are integrable over a closed
region ‘R’, then ‘f + g’ is integrable  over the closed region ‘R’ and we define the
equation,

Property 3: Additivity Property
Definition. Consider that ‘R’ and ‘S’ be the two non-overlapping closed regions
(Refer Figure 8.3) and assume that a specified function ‘f’ is integrable over the
region ‘R ∪ S’, then we define the equation,
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Fig. 8.3 Two Non-Overlapping Regions ‘R’ and ‘S’

Property 4: When ‘S’ is a Closed Subregion of ‘R’ Property
Definition. Assume that the specified function ‘f’ is integrable over the closed
region ‘R’ and also assume that ‘S’ is a closed subregion of ‘R’ as shown in Figure
8.4, then we define the equation,

Figure 8.4 defines the relationship between the regions ‘R’ and ‘S’, i.e., region ‘S’
in the subregion of ‘R’.

Fig. 8.4 Relationship Between the Regions ‘R’ and ‘S’
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Property 5: Non-Negativity of the Double Integral Property
Definition. Assume that the specified function ‘f’ is integrable over the closed
region ‘R’ and let f(x, y) ≥ 0 over ‘R’, then we define the equation,

Property 6: Monotone Property of the Double Integral
Definition. Assume that the specified functions ‘f’ and ‘g’ are integrable over the
closed region ‘R’ through g(x, y) ≤ f(x, y) for all [x, y] ∈ R, then we define the
equation,

Property 7: Median Property of the Double Integral
Definition. Assume that if ‘f’ is a continuous function on the closed region ‘R’ and
A(R) is the area of ‘R’ then there exists at least one point [xi, yi] ∈ R such that we
obtain the equation,

Properties of Triple Integrals
Different properties that are defined for single and double integrals are also
applicable to the triple integrals. These are considered as significant properties
and are used for calculating the triple integrals.
Property 1: Volume Property of the Triple Integral
Definition. The volume property is used for estimating the specified volume ‘T’
using the equation,

This property is used for evaluating the triple integral specifically when ‘T’ is the
box and defined as T = [a, b] × [c, d] × [e, f], then,
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Property 2: Linearity Property of the Triple Integral
Definition. The linearity property is used for estimating the specified ‘T’ using the
equation where ‘α’ and ‘β’ are constants,

Property 3: Additivity Property of the Triple Integral
Definition. The additivity property is used for evaluating the triple integral when
‘T’ is divided into the finite number of non-overlapping simple and basic regions
named as T1, . . . ., Tn, then we define the equation,

Property 4: Additive Property of the Triple Integral for Evaluating Two
Non-Overlapping Solid Subregions
Definition. For evaluating two non-overlapping solid subregions ‘Q1’ and ‘Q2’
which together comprise ‘Q’ we define the equation,

This property is used for evaluating two non-overlapping solid subregions ‘Q1’
and ‘Q2’ which together comprise ‘Q’. When ‘Q’ is the simple solid region then
the triple integral of the form ‘‘∭   f(x, y, z) dV’ is evaluated with regard to the

iterated integral selecting one order of integration from the possible six orders of
integration stated below.

dx dy dz,    dy dx dz,    dz dx dy,    dx dz dy,    dy dz dx,    dz dy dx

Check Your Progress

1. What are double integrals?
2. What is the sum rule of double integrals?
3. What is the additivity property of the triple integral?
4. What is the linearity property of the triple integral?
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8.3 JACOBIAN

The Jacobian transformation is used for changing variables in both the double and
triple integrals.
Double Integral the Jacobian Transformation
For changing variables in the specified double integral the Jacobian
transformation is used. The given definition is for the Jacobian transformation.
Definition. The Jacobian of the transformation x = g(u, v) and y = h(u, v) is,

… (14)

The Jacobian is well-defined through the determinant of ‘2 × 2’ matrix, where
the determinant is computed as follows.

Consequently, the determinant formula is written as,

Change of Variable for a Double Integral
We use the Jacobian transformation method for changing the variables for a double
integral.
Consider that the function f(x, y) is to be integrated over the specified region ‘R’.
Applying the transformation x = g(u, v) and y = h(u, v) we can define that the
region becomes ‘S’ and the integral takes the form,



Double and Triple Integrals

NOTES

Self-Instructional
156 Material

Here  in the above mentioned integral ‘u/v’ signify that it can be stated as du
and dv when it is specifically converted into two single integrals instead of the form
dx and dy used for dA. Furthermore, we normally use the dA notation for both.
Triple Integral the Jacobian Transformation
For changing variables in the specified triple integral the Jacobian
transformation is used. The given definition is for the Jacobian transformation.
Definition. Given a region ‘R’ for the triple integral we use the Jacobian
transformation x = g(u, v, w), y = h(u, v, w) and z = k(u, v, w) for transforming
the region ‘R’ into ‘S’ as new region. Applying Jacobian we obtain,

The Jacobian is well-defined through the determinant of ‘3 × 3’ matrix,
where the determinant is computed as follows.
The integral in this transformation is defined as,

Similar to the double integral, here dV used for the integral ‘u/v/w’ signify that it
can be stated for du, dv and dw when it is converted into three single integrals.
Furthermore, we normally use the dV notation for both.
Example 8. Prove that when changing the variables of double integral to the polar
coordinates form, we obtain dA = r dr dθ.
Solution: To change the variables of double integral to the polar coordinates
form, follow the steps given below.
To integrate with regard to polar coordinate, the transformation will follow the
standard formula for conversion, such as,

x = r cos θ y = r sin θ
 The transformation as per Jacobian is,
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Substituting the polar coordinates we obtain,

Therefore, substituting with ‘r’, we obtain,

        = rdr dθ r dr dθ
Hence proved.

8.4 CHANGE OF ORDER OF INTEGRATION

For changing the order of integration for any given multiple integral, follow the
steps given below.
Step 1. Outline the specified region of integration.
Step 2. Divide (slice) the specified region in accordance with the new defined
order. Now starting with the outer variable define the new limits of integration one
by one in sequence.
Step 3. Now calculate the new specified integral.

For integrating the integral  we evaluate by defining the order of
integration, i.e., first integrating with regard to ‘x’ and integrating with regard to ‘y’
and on changing the order of integration we first integrate with regard to ‘y’ and
then integrate with regard to ‘x’.
Example 9. Evaluate the given double integral by changing the order of integration
by first sketching the region ‘R’ for the integration of,

Then change the order of integration for evaluating the resultant integral.
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Solution: Follow the steps given below.
We first sketch or outline the region of integration as shown below in Figure 8.5.

Fig. 8.5 Region of Integration

Figure 8.5 illustrates the region of integration as triangular region ‘R’. For changing
the order of integration to dy dx, divide (make partition) the interval [0, 1] into
comparatively small subintervals on the x-axis. When the order of integration is
defines as dx dy, then on the y-axis divide the interval as [0, 4].
As shown in Figure 8.5, outline a rectangle with its base as the subinterval on the
divided or defined partition while its length must extend or spread starting from the
lower limit or edge up to the upper limit or edge of the specified region.
Subsequently, because the order of integration is defined as dy dx, hence every
single point (x, y) on the specified rectangle essentially satisfy,

0 ≤ x ≤ 1    and    0 ≤ y ≤ 4x
Given is the integral,

On integrating we obtain,
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Example 10. Reverse the order of integration for the given double integral of the
form,

Solution: Follow the steps given below.
Step 1. The specified region is defined through 0 ≤ x ≤ 1 and x2 ≤ y ≤ x. The
present order of integration is shown in Figure 8.6 having the horizontal portions
or slices.

Fig. 8.6 Order of Integration having the Horizontal Portions or Slices

Step 2. Now reversing the order of integration, the specified region is partitioned
or sliced such that the partitioned slices have vertical portions and are perpendicular
to the x-axis as shown in the Figure 8.7.

Fig. 8.7  Reverse Order of Integration having the Vertical Portions or Slices

Step 3. The specified range for ‘x’ is 0 ≤ x ≤ 1, and consequently the new limits of
‘y’ will be 
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Step 4. Therefore, we obtain the integral with reverse order of integration as
follows,

Check Your Progress

5. Which transformation is used for changing variables in both the double and
triple integrals?

6. Define Jacobian transformation.

8.5 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. Double integrals are the integrals using which we can find the function of
two variables.

2.

3.

4.

5. The Jacobian transformation is used for changing variables in both the double
and triple integrals.

6. The Jacobian of the transformation x = g(u, v) and y = h(u, v) is,
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8.6 SUMMARY

• The multiple integral is defined as a ‘definite integral’ of a function of more
than one real variable, such as f(x, y) or f(x, y, z). Integrals of a function of
‘two variables’ over a region in R2 are termed as ‘double integrals’ while
the integrals of a function of ‘three variables’ over a region in R3 are termed
as ‘triple integrals’.

• A double integral has the form,

Here ‘R’ is termed as the region of integration, precisely the region in the (x,
y) plane. Fundamentally, the double integral evaluates the volume under the
specified surface z = f(x, y).

• Integration of a function of three variables, say w = f(x, y, z) over a three-
dimensional region R in xyz-space is termed a triple integral and is denoted
as follows,

• The Jacobian of the transformation x = g(u, v) and y = h(u, v) is,

8.7 KEY WORDS

• Domain: The domain of a function is the complete set of possible values of
the independent variable.

• Continuous functions: A continuous function is a function for which
sufficiently small changes in the input result in arbitrarily small changes in the
output.

• Partial derivative: a derivative of a function of two or more variables with
respect to one variable, the other(s) being treated as constant.
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8.8 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short Answer Questions
1. Evaluate the given double integral of the form,

 

2. Evaluate the given double integral of the form,   .

3. Define additivity property of the triple integral.
4. Define monotone property of the double integral.

Long Answer Questions
1. Evaluate the given triple iterated integral of the form,

 

2. Let x = r cos θ, y = r sin θ be the change of coordinates from (r, θ) to
(x, y). What is the Jacobian of this transformation?

3. Evaluate the given double integral by changing the order of integration by
first sketching the region ‘R’ for the integration of,

 .

4. Reverse the order of integration for the given double integral of the form,

 .

8.9 FURTHER READINGS

Arumugam, Issac. 2005. Calculus. Palayamkottai: New Gamma Publishing House.
Arumugam, Issac. 2013. Differential Equations and Applications. Palayamkottai:

New Gamma Publishing House.
Sharma, A.K. 2004. Text book of Differential Calculus. New Delhi: Discovery

publishing house.
Narayanan, S, T.K. Manickavasagam Pillai. 2009. Differential Equations and its
applications. Chennai: S.Viswanathan(Printers & Publishers) Pvt. Ltd.
Venkataraman, M.K, Manorama Sridhar. Calculus and Fourier series. Chennai:
The National Publishing Company.



Beta and Gamma
Functions

NOTES

Self-Instructional
Material 163

BLOCK - III
BETA, GAMMA FUNCTIONS AND SOLUTIONS

OF DIFFERENTIAL EQUATIONS

UNIT 9 BETA AND GAMMA
FUNCTIONS

Structure
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9.6 Key Words
9.7 Self Assessment Questions and Exercises
9.8 Further Readings

9.0 INTRODUCTION

In this unit, you will learn the definition of gamma function and the beta function.
Further, you will know about some of the properties of gamma and beta function.The
gamma function’s original intent was to model and interpolate the factorial function,
mathematicians and geometers have discovered and developed many other
interesting applications. The gamma function is a component in various probability-
distribution functions, and as such it is applicable in the fields of probability and
statistics, as well as combinatorics. The Beta function was first studied by Euler
and Legendre and was given its name by Jacques Binet; its symbol B is  a  Greek
capital  â rather than the similar Latin  capital  β.  Just  as  the  gamma  function  for
integers  describes  factorials,  the  beta  function  can define  a  binomial  coefficient
after  adjusting  indices.

9.1  OBJECTIVES

After going through this unit, you will be able to:
• Define gamma function
• Discuss properties of gamma function
• Define beta function
• Discuss properties of beta function
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9.2  GAMMA FUNCTION

Mathematically, the Gamma function Γ(z) or also sometimes as Γ(x), is defined
as, ‘the extension of the factorial function, through its argument which is shifted
down by 1 for the real and complex numbers’, and is represented using the Greek
alphabet Γ. When ‘n’ is a positive integer then,

Γ(n) = (n – 1)!,  for n = 0, 1, 2, . . . . . .
The Gamma function can be specified for all complex numbers excluding the non-
positive integers. Thus, we can define the complex numbers by means of a positive
real part through the convergent improper integral as follows,

Definition 1. The Gamma function can be defined as the generalization of n! (n
factorial), where ‘n’ is any positive integer to ‘x!’ and ‘x’ being any real number.
The Gamma function defined by the improper integral is,

                  …(1)

Following are the fundamental properties of Gamma function.
• The Gamma function is convergent for x > 0.
• The following important property for Gamma function is obtained by using

the method integration by parts to Equation (1).
  Γ(x + 1)  =  x Γ(x)                                …(2)

The function Γ(x) in Equation (2) is calculated for all x > 0 when we know its
value for the interval 1 ≤ x < 2.
Definition 2. The following improper integral exists for every x > 0, such that,

Here the function Γ(x) is termed as the Gamma function.
We will define improper integrals with regard to the following theorems.
Theorem 1. Comparison Test for Improper Integral of Type I
Let f(x) and g(x) are two continuous functions on [a, ∞] such that for all x ≥ a,

0  ≤  f(x)  ≤ g(x)
Then, we can state,

1. When is convergent accordingly is 



Beta and Gamma
Functions

NOTES

Self-Instructional
Material 165

2.When is divergent to infinity accordingly is 

Theorem 2. Limit Comparison Test
Let f(x) and g(x) are two non-negative continuous functions on [a, ∞]. Assume
that,

Consequently, both   and  are either convergent or divergent.

Theorem 3. For every x > 0, the following improper integral is considered
as convergent.

Proposition 1. For x > 0,
Γ(x + 1)  =  x Γ(x)

Proof. For every N > 0, through integration by parts, we can define,

For all x > 0, we can define that limit is,

Accordingly, integration by parts gives:

 =  x Γ(x)
Hence proved.
Evidently,
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As proved by Proposition 1, for x > 0, through integration by parts we obtain,
Γ(x + 1)  =  x Γ(x)

Here Γ(x + 1)  =  x Γ(x) is termed as significant functional equation and the
integer values of the functional equation is,

Γ(n + 1)  =  n !
Corollary 1. For every n  ≥  0, Γ(n + 1) = n!  for n = 0, 1, 2, …….
The factorial n! of positive whole number n then this integer n is represented by,
 n! = 1 × 2 × 3 × . . . . . . × (n – 1) × n
For example, 5! = 1 × 2 × 3 × 4 × 5 = 120.
However this formula is not valid if n is not an integer.
Indefinite, Proper Definite and Improper Definite Integrals
The integration process includes mainly two types of integrals, the definite
integrals and the indefinite integrals. Between these two integrals the fundamental
difference is that the definite integrals are defined with regard to limits of
integration while the indefinite integrals are not defined with regard to limits.
Further, the definite integrals are classified as the proper definite integrals and
the improper definite integrals. The definite integrals are evaluated by simply
using real numbers as limits of integration. In the integration process you can set
the upper limits of integration to ‘∞’ or infinity and the lower limits can be set
to ‘– ∞’ or negative infinity. Following table describes the types of an indefinite
integral, a proper definite integral and an improper definite integral.

The definite integral which contains one or more additional infinite limits of
integration or an integrand which contains infinity (∞) within its limits of
integration is termed as an improper integral.
Definition 3. According to Euler (1730), when x > 0 then,

                  …(3)

Euler stated that for basic change of variables this definition or in Equation
(3) for x > 0 will take the fundamental form of Gamma equation.
Theorem 4. For x > 0 , we have,
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…(4)

Also sometimes,

                  …(5)

Theorem 4 for Gamma function Γ(x) is also termed as the Eulerian Integral
of the Second Kind. We can deduce the following derivatives by integrating
under the integral sign of Equation (4).

 

Evaluating the Integral
For positive ‘x’ the Gamma function is defined through the integral,

To evaluate this integral we first consider as x = 1.

 

 = 0 + 1 = 1
Now considering that x = 1/2 we have,
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To evaluate the value for the Gamma function at some additional points we use the
identity integration by parts as shown below.

     

    

    

     = 0 + x Γ(x) = x Γ(x)
Therefore, for positive x we can define,

 Γ(x + 1) = x Γ(x)
Applying this to the positive integer ‘n’ we obtain,

Therefore, we can state that, ‘Gamma function is the generalization of the
factorial function’. Figure 9.1 illustrates the limit of the Gamma function at ‘0’ on
the right-hand side of the graph is ‘∞’ or infinity.

Fig. 9.1 Limit of the Gamma Function
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Unique Standards of  Γ (x)
Excluding the integer values for x = n, which has,

Γ (n)  =  (n – 1)!
While certain non-integer values are defined as closed form.
With change of variables for ‘t = u2’, we obtain the given equation,

 

The various forms of functional equation for positive integers ‘n’ involves:

Similarly, for the negative integers,

Another explanation by Euler (1729) and Gauss (1811) is as follows.
Assume that x > 0 and state,
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Then,

Evidently,

And also,

   

Therefore,
Γ (1) = 1
Γ (x + 1)  =  x Γ (x)

9.2.1 Properties of Gamma Function

The Gamma function Γ(z) follows the below given properties:
Gamma Difference Equation

Γ(z + 1) = z (z)
Euler’s Gamma Function

Euler’s Reflection Formula

Legendre’s Duplication Formula

Here ‘ℕ’ specifies the natural numbers.
Also represented as,
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Complex Conjugate

Gamma Function of the One Half

Complement Formula
The complement formula is significant identity concerning the Gamma function
through the complementary values ‘x’ and ‘1 – x’ which must not be negative or
null integers represented as,

Gauss Multiplication Formula

Euler Multiplication Formula

Stirling Formula
When the integer ‘n’ tends to infinite then we use the following asymptotic
formula,

The Stirling formula is significant since the arithmetical factorial function is considered
equivalent to that specific expression which comprises of important and essential

analytic constants, such as , π, e.

Recursive Formula
The Gamma function satisfies the recursive property and is represented as.
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Γ (z)  = (z – 1)  Γ (z – 1)
Or,

Γ (α)  = (α – 1)  Γ (α – 1)

Use the method integration by parts for deriving the recursion as shown below.

Example 1. Evaluate the values for x = 1/2, x = 1/3, x = 1/4 applying the formula,

Solution: The values are evaluated as follows:
1. For x = 1/2

2. For x = 1/3

3. For x = 1/4

Integers and Half-Integers for Gamma Function
When estimating the positive integers the Gamma function agrees with the factorial
fractions.
The gamma function,   Γ (n)  =  (n – 1)!, where n = 1, 2, 3, 4, ……., and so on.
Therefore, the factorial is estimated as,

Γ (n)  =  (n – 1)!
Γ (1)  =  1
Γ (2)  =  1
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Γ (3)  =  2
Γ (4)  =  6
Γ (5)  =  24, ……., and so on.

The Gamma function is not distinct for non-positive integers. For half-integers
which are positive, the values of functions are accurately given as,

Equivalently, we can define the values of non-negative integer ‘n’ as follows:

Here ‘n!!’ represents the double factorial.
Example 2. Evaluate the values for  Γ(5).
Solution: The values are evaluated as follows using the Gamma factorial function,

Γ (n)  =  (n – 1)!
Taking n = 5, we have,

Γ (5)  =  (5 – 1)!
= 4!
= 4 × 3 × 2 × 1
= 24

Example 3. Evaluate the values for the given ratio.

Solution: The values are evaluated as follows using the recursive formula:
Γ (z)  = (z – 1)  Γ (z – 1)

Applying the recursive formula to the numerator of the given ratio, we obtain,
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  =  130/9

Check Your Progress

1. For what value of x, the gamma function is convergent?
2. Gamma function is the generalization of which function?
3. What is Gamma difference equation?

9.3 BETA FUNCTION

In mathematics, the beta function is defined as a special characteristic function
and is also characterized (categorized) as the ‘Euler integral of first kind’. This
function was first introduced by Euler and Legendre.
The mathematician Jacques Binet termed it as ‘beta’ and defined the beta function
using the symbol ‘B’ taken from Greek language capitals B or uppercase beta.
Following are the standard definitions of beta function.
Definition 1. The beta function is defined on the fields of real numbers and is
usually denoted by B(p, q), where p and q are real numbers and is represented
as,

For p, q > 0.
We can also represent the beta function in the Gamma function form as follows.



Beta and Gamma
Functions

NOTES

Self-Instructional
Material 175

Since the Gamma function is represented as,

The factorial notation form can be used to calculate the beta function using the
formula,

For p! = p . (p – 1) . (p – 2) . (p – 3) ……. and so on.
Definition 2. The beta function is expressed as,

When x ≥ 1 and y ≥ 1, then this integral is termed as a proper integral. For x
> 0 and y > 0 and when either or both x < 1 or y < 1 then the integral is termed
as improper but convergent.
Definition 3. The beta function is a two parameter composition of Gamma
functions and is represented as,

The beta function and the Gamma function can be used for representing various
integrals. The following two are significant equations representing integrals.

Definition 4. The definite integral which is related to the Γ–function is the
Beta function represented as B(a, b) and is defined as,

For a > 0,  b > 0. The beta function can be represented as follows in the Gamma
function format,



Beta and Gamma
Functions

NOTES

Self-Instructional
176 Material

Definition 5. When x, y are positive real numbers then the beta function B(x,
y) can be represented as follows,

Also, B(x, y) = B(y, x)  for x, y > 0.
Definition 6. Beta function is ‘Symmetric’, i.e., the value of beta function is
irrespective to the order of its parameters.

B(a, b) = B(b, a)
Properties of Beta Function
Following are the significant properties of the beta function for p and q real
numbers.

1. B (p, q) = B (q, p)
2. B (p, q) = B (p, q + 1)  +  B (p + 1, q)

3.

4.

5.

6.

7. The following are two significant integral forms of the beta function.

•

•

Example 4. Evaluate the values for B (3/2, 1).
Solution: The values are evaluated as follows using the given beta function:
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Given is,   p = 3/2   and q = 1.
Applying the values for p = 3/2 and q = 1 in the above equation, we obtain,

Evidently,

And,

Hence,

 

Example 5. Evaluate the values for,

 

Solution: The values are evaluated as follows:
Given is,

Can be defined as,
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We can compare this form with the beta function as follows,

We obtain, p = 5 and q = 4.
Consequently, using the beta function of the form,

We get,

 

 = 1 / 8.7.5
 = 1 / 280

Check Your Progress

4. Which function is known as Euler integral of first kind?
5. How will you represent beta function B(x, y) when x and y are positive real

numbers?
6. When does the beta function termed as improper but convergent?

9.4 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. For x > 0.
2. Gamma function is the generalization of the factorial function.
3. Γ(z + 1) = z Γ(z).
4. Beta function.
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5. When x, y are positive real numbers then the beta function B(x, y) can be
represented as follows,

6. The beta function is expressed as,
For x > 0 and y > 0 and when either or both x < 1 or y < 1 then the integral
is termed as improper but convergent.

9.5 SUMMARY

• The Gamma function can be defined as the generalization of n! (n factorial),
where ‘n’ is any positive integer to ‘x!’ and ‘x’ being any real number. The
Gamma function defined by the improper integral is,

• Γ(x + 1)  = x Γ(x) for x > 0.

•

• The beta function is defined on the fields of real numbers and is usually
denoted by B(p, q), where p and q are real numbers and is represented as,

• The factorial notation form can be used to calculate the beta function using

the formula,  for p! = p. (p – 1). (p – 2).

(p – 3) ……. and so on.
• The beta function is expressed as,
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When x ≥ 1 and y ≥ 1, then this integral is termed as a proper integral. For
x > 0 and y > 0 and when either or both x < 1 or y < 1 then the integral is
termed as improper but convergent.

• The beta function is a two parameter composition of Gamma functions and
is represented as,

• Beta function is ‘Symmetric’, i.e., the value of beta function is irrespective
to the order of its parameters. B(a, b) = B(b, a)

9.6 KEY WORDS

• Factorial: The factorial of a non-negative integer n, denoted by n!, is the
product of all positive integers less than or equal to n. For example, the
value of 0! is 1.

• Improper integral: An improper integral is the limit of a definite integral as
an endpoint of the interval of integration approaches either a specified real
number, or in some instances as both endpoints approach limits.

• Convergent: Convergence, in mathematics, property (exhibited by certain
infinite series and functions) of approaching a limit more and more closely
as a variable of the function increases or decreases or as the number of
terms of the series increases.

• Divergent: A divergent series is an infinite series that is not convergent,
meaning that the infinite sequence of the partial sums of the series does not
have a finite limit. If a series converges, the individual terms of the series
must approach zero.

9.7 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short Answer Questions
1. What is Gauss multiplication Formula?
2. Show that Gamma function satisfies the recursive property.
3. Write a short note on gamma function.
4. Write a short note on beta function.
5. Show that beta function is symmetric.
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Long Answer Questions
1. Evaluate the values for x = 2, x = 3 applying the formula,

2. Evaluate the values for  (10)

3. Evaluate the values for B (5/2, 3).

4. Using beta function evaluate the values for,   

5. Using beta function evaluate the values for,  

6. Discuss about Gamma function and Beta function with the help of examples.
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10.0 INTRODUCTION

This unit discusses about differential equations and their solutions. A differential
equation  relates some function with its derivatives. In applications, the functions
usually represent physical quantities, the derivatives represent their rates of change,
and the equation defines a relationship between the two. Differential equations
play a very important role in many disciplines including engineering, physics,
economics, and biology.

Differential equations are called partial differential equations (pde) or ordinary
differential equations (ode) according to whether or not they contain partial
derivatives. The order of a differential equation is the highest order derivative
occurring. A solution (or particular solution) of a differential equation of order n
consists of a function defined and n times differentiable on a domain having the
property that the functional equation obtained by substituting the function and its n
derivatives into the differential equation holds for every point in that domain.

10.1 OBJECTIVES

After going through this unit, you will be able to:
• Describe partial and ordinary differential equations
• Solve differential equations
• Solve differential equations using the separation of variables method
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10.2 DIFFERENTIAL EQUATIONS

In mathematics, a Differential Equation (DE) is defined as an equation of the
form that interconnects certain function with its derivatives, where usually the function
represents the physical quantity while the derivatives denote their rates of change
and the relationship between the two is defined by the equation. Fundamentally,
the ‘solutions of differential equations’ are functions which precisely
“represent the relationship or correlation between a continuously varying
or fluctuating quantity and its rate of change”.
Definition. A Differential Equation (DE) comprises of one or more expressions
including derivatives of one dependent variable ‘y’ with reference to another
independent variable ‘x’, such as

Definition. An ordinary differential equation is a differential equation that includes
a function of a single variable and some of its derivatives, such as

Definition. A differential equation is an equation for a function that relates the
values of the function to the values of its derivatives.
Definition. A differential equation is an equation between specified derivative on
an unknown function, its values and known quantities and functions.
Definition. A Differential Equation (DE) is an equation that comprises of a
function and its derivatives. Differential equations are categorized as Partial
Differential Equations (PDE) or Ordinary Differential Equations (ODE) in
accordance with whether or not they hold partial derivatives, while the order
of a differential equation is defined on the basis of the highest order derivative
that occurs in the equation.
Several laws of physics are formulated or expressed as Differential Equations
(DEs). Therefore, the greatest mathematicians and mathematical physicists have
been studying DEs ever since the time of Sir Newton.

10.2.1 Types Of Differential Equations

The differential equations are of the following types.
Ordinary Differential Equation (ODE): An ordinary differential equation is
specifically a differential equation that is defined for a single function. An ordinary
differential equation comprises of ordinary derivatives. Therefore the ordinary
differential equations manage the functions of a single variable and their derivatives.
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Definition. An Ordinary Differential Equation (ODE) is an equation that
contains an unknown function of one real or complex variable ‘x’, its
derivatives and some specified functions of ‘x’. Generally, the unknown function
is characterized by a variable denoted by ‘y’, which consequently depends on
‘x’. Hence, ‘x’ is termed as the independent variable of the equation.
Partial Differential Equation (PDE): A partial differential equation is defined
specifically for a differential equation that is a function of several variables. A partial
differential equation comprises of partial derivatives.
Definition. A Partial Differential Equation (PDE) is a differential equation
of the form that contains unknown multivariable functions and their partial
derivatives. Therefore the partial differential equations deal with functions of several
variables.

10.2.2 Order and Degree of Differential Equations

Basically, the order of a differential equation is specified as the order of the
highest derivative appearing in the equation.
Definition Order. Differential equations are categorized with respect to order,
since the order of a differential equation is defined with regard to the order of
the highest order derivative that exists or occurs in the equation.
Definition Order. The order of the differential equation is defined with regard
to the order of the highest derivative included in the equation.
The degree of any differential equation is defined with regard to the power of
the highest order derivative that exists in the equation.
Definition Degree. The degree of differential equation of which the differential
coefficients are free from radicals and fractions is termed as the positive
integral index of the highest power of the highest order derivatives occurring
in the equation.
The following differential equations represents the equations with different orders
and degrees.
Following are examples of first order differential equations:

     and  

Following are examples of second order (order 2) differential equations:

     and    ay ′′ + by ′ + cy = 0

Following is the example of third order (order 3) differential equation and
degree 1:
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Following is the example of second order (order 2) differential equation and
degree 3:

An ordinary differential equation of order ‘n’ is an equation of the form,
F (x, y, y′, y ′′, . . . . . . . . ., y(n)) = 0

Here ‘y’ is a function of x and y′ = dy/dx is the first derivative with respect to
‘x’ and similarly y(n) = dny/dxn is the ‘nth’ derivative with respect to ‘x’.
An ordinary differential equation of order ‘n’ is assumed to be linear if it is of
the form,

A linear ordinary differential equation is considered as homogeneous when
Q(x) = 0. Occasionally, the following form of an ordinary differential equation is
also considered as homogeneous.

As a general rule, the ordinary differential equations of nth-order has ‘n’
linearly independent solutions.
Linear Differential Equation
A linear differential equation is the specific form of a differential equation which
is defined by means of a linear polynomial for the unknown function and its
derivatives. Following is the form of linear differential equation:

Here, the forms a0 (x), a1 (x), . . . . , an (x) and b(x) are termed as the arbitrary
differentiable functions which may not be linear, and y ′, y ′′, . . . . , y(n) are
defined as the successive derivatives of the unknown function ‘y’ with regard
to the variable ‘x’.
Assume that ‘y’ is a dependent variable while ‘x’ is an independent variable
and also that y’ = f(x)’ is an unknown function of ‘x’. There are different
notations for writing the differentiation equations which depend on the specific
author, for example as per the Leibniz the notation for differentiation and
integration is represented as dy/dx, d2y/dx2, . . . . , dny/dxn, while the derivatives
are represented using the Lagrange notation as y ′, y ′′, . . . . , y(n).
Example 1. Obtain the order and degree for the following differential equation.
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Solution: The order and degree are evaluated as follows.
Given is,

Consequently, y ′ – cos x = 0
Hence, the highest order of derivative = 1
Therefore, Order = 1
Further since, Degree = Power of y ′
Hence, Degree = 1
The given differential equation is of Order 1 and Degree 1.
Example 2. Obtain the order and degree for the following differential equation.

Solution: The order and degree are evaluated as follows.
Given is,

Consequently, xy y ′′  +  x(y ′)2  +  y y ′ = 0
Hence, the highest order of derivative = 2
Therefore, Order = 2
Further since, Degree = Power of y ′′
Hence, Degree = 1
The given differential equation is of Order 2 and Degree 1.
Example 3. Obtain the order and degree for the following differential equation.

Solution: The the order and degree are evaluated as follows.
Given is,

Hence, the highest order of derivative = 3
Therefore, Order = 3
Further since,

Degree = Power of y ′
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Here y ′ is in  which is not a polynomial equation in derivatives.

Hence, Degree = Not Defined.
The given differential equation is of Order 3 and Degree is Not Defined.

Check Your Progress

1. What is a differential equation?
2. What is an ordinary differential equation?
3. What is an order of a differential equation?

10.3 SOLUTION OF DIFFERENTIAL EQUATIONS

A Differential Equation or DE comprises of derivatives or differentials. Some
of the differential equations are solved using integration. A differential can be
defined as a derivative such that where essentially dy/dx is not denoted or
symbolized in the fraction form. Following are some frequently used examples of
differentials.

• dx – Specifies that it is ‘an infinitely small change in x’
• dθ – Specifies that it is ‘an infinitely small change in θ’
• dt – Specifies that it is ‘an infinitely small change in t’

General and Particular Solutions of a Differential Equation
The general and particular solutions of any differential equation is obtained as
follows.
Definition. A solution of a differential equation is a relation between the
independent variable and dependent variable, which is free of derivatives
of any order, and which identically satisfies or justifies the differential equation.
Differential Equations Solutions
Assume that a common differential equation of nth order is of the form,

Here ‘F’ is considered as the real function of its (n + 2) arguments as,
x,  y,  dy/dx,  . . . . . . . , d n y/d xn

Consequently, we can define a function f(x) in an interval x ∈ I which includes
nth derivative along with all the derivatives of lower order for all x ∈ I is
termed as an ‘explicit solution’ for the specified differential equation provided
that the following condition is satisfied,
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F[x,  f (x),  f ′(x),  f ′′ (x), . . . . . . . . , f (n) (x)]  =  0 for all  x ∈ I
Additionally, a relation g(x, y) = 0 is termed as the ‘implicit solution’ for the
specified differential equation when as a minimum it expresses one real function
‘f’ for the variable ‘x’ on the specified interval ‘I’ in such method that the function
of the differential equation becomes an explicit solution on this interval as stated
above.

10.3.1 General Solution of a Differential Equation

Definition. The ‘General Solution’ of an ‘nth order differential equation’ is
the unique method that includes ‘n’ necessary (essential) arbitrary constants.
For solving any differential equation of first order we can use the variables separable
method. The arbitrary constant is necessarily or essentially defined when integration
process is used for obtaining solution of differential equation. For example, after
simplification or generalization the general solution of the first order differential
equation essentially contains ‘1’ arbitrary constant.
In the same way, after simplification or generalization the general solution of the
second order differential equation essentially contains ‘2’ arbitrary constants, and
so on.
Fundamentally, geometrically the general solution of certain differential equation
will represent an n-parameter family of curves. Figure 10.1 illustrates the family of
curves having 1-parameter defining the general solution of the specified differential
equation of the form,

dy/dx = 3x2

This on simplification gives,
y = x3 + c

Here ‘c’ is an arbitrary constant.

Fig. 10.1 Parameter Family of Curves
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10.3.2 Particular Solution of a Differential Equation

Definition. A ‘Particular Solution’ of a specified differential equation is a
unique solution which is obtained using the ‘General Solution’. For this we
assign specific or particular values to the arbitrary constants. The necessary
conditions to estimate the values of the arbitrary constants includes either the form
of an initial value problem or of boundary conditions. We can also obtain the
Singular Solution of a Particular Solution for the specified differential
equation where we will not use the General Solution, i.e., by not specifying
or assigning the values to the arbitrary constants.
Example 4. Evaluate the following given function,

f(t) = c1et  +  c2e–3t  +  sin t
Then determine that whether the above equation is a general solution of the specified
differential equation of the form,

 = 2 cos t – 4 sin t

Also obtain the particular solution for the specified differential equation which
must satisfy the initial value conditions where,

f(0) = 2  and f ′(0) = – 5
Solution: The values are evaluated as follows for the specified differential equation.
Determination of the General Solution
The function f(t) essentially satisfies the specified differential equation for obtaining
the required solution. We will first define the derivatives of ‘f’ as follows:

f(t) = c1et  +  c2e–3t  +  sin t
f ′(t) = c1et  –  3c2e–3t  +  cos t
f ′′(t) = c1et  +  9c2e–3t  –  sin t

For evaluating the result, on the left-hand side of the above given equation we will
now use these defined values of ‘F’ to obtain the equation as follows,

 = 2 cos t – 4 sin t

The equation on the left-hand side becomes,
     (c1et + 9c2e–3t – sin t) + 2(c1et – 3c2e–3t + cos t) – 3(c1et + c2e–3t + sin t)
Now we cancel the like terms and on simplifying we obtain the following equation:

= 2 cos t – 4 sin t
This equation is similar to the equation given on the right-hand side. Consequently,
the given function f(t) is a solution for the specified differential equation.
Further,
Because the order of the given differential equation is of Order = 2
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Also the number of the Arbitrary Constants in the given Function f(t) = 2
Hence, the solution specified by the function f(t) is certainly the General Solution
of the given Differential Equation.
Determination of the Particular Solution
Given is the expression,

f(t) = c1et  +  c2e–3t  +  sin t
Considering the above expression at ‘t = 0’ we obtain,

f(0) =  c1  +  c2  =  2 …(1)
Again consider the following expression,

f ′(t) = c1et  –  3c2e–3t  +  cos t
Then at ‘t = 0’ we obtain,

f ′(0) =  c1  –  3c2  +  1 =  – 5 …(2)
We then solve the simultaneous linear Equation (1) and also the simultaneous linear
Equation (2) to obtain the following values of c1 and c2.

c1  =  0     and     c2  =  2
Therefore, the required or essential particular solution is given by the equation of
the form,

f(t) = 2e–3t  +  sin t
Example 5. Evaluate the given equation for obtaining the particular solution.

y ′ = 5 for   x = 0   and   y = 2
Solution: The values are evaluated as follows.
Given is, y ′ = 5
Now we express in the form of differential equation as,  dy = 5 dx
On integrating both the sides of the equation we obtain,    y = 5x + K
Where K is a constant.
Given is the values of boundary conditions as,

x = 0   and   y = 2
Therefore, K = 2
And hence, y = 5x + 2
The particular solution is y = 5x + 2.

10.4 VARIABLE SEPARABLE METHODS

Certain form of differential equations can only be solved using the particular method
termed as the ‘separation of variables’ or ‘variables separable’. This specified
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method is possibly used only when the differential equation is expressed in the
form,

A(x) dx + B(y) dy = 0
Here A(x) is termed as the function of only ‘x’ while B(y) is termed as the
function of only ‘y’.
Therefore, the differential equation is assumed or considered to be separable when
we can express the equation by separating the variables. After expressing the
given differential equation in the above format the equation is solved using the
variable separable method through the process of integration for obtaining the
desired general solution.
The variables separable method is specifically used for solving the
differential equations of first order and first degree.
Following are three significant steps involved in the variable separable method.
Step 1. Put or arrange all the ‘y’ terms including the term ‘dy’ on one side of the
equation and similarly put all the ‘x’ terms including the term ‘dx’ on the other side
of the equation.
Step 2. Then start integrating one side of the equation with regard to ‘y’ and the
other side of the equation with regard to ‘x’. Always define or add in the equation
‘+ C’ or ‘+ K’, which is termed as the constant of integration.
Step 3. Simplify the equation to obtain the desired result.
Let us understand the concept with the help of the following example.
Given is the differential equation,

dy/dx = 5xy
We use the variable separable or separation of variables method for simplifying
the given differential equation. For this we will first shift all the ‘y’ terms including
the term ‘dy’ on one side of the equation, i.e., left-hand side as follows,

dy / y dx = 5x
Similarly, we will shift all the ‘x’ terms including the term ‘dx’ on the other side of
the equation, i.e., right-hand side as follows,

dy / y = 5x dx
Example 6. Solve the given differential equation using the variable separable
method.

2 y dy  =  (x2 + 1) dx
Solution: The differential equation is evaluated as follows.
This differential equation is expressed or stated in the variable separated form
because the ‘x’ terms and ‘y’ terms are already separated. Hence, we only integrate
for simplifying the given differential equation.
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Given is, 2 y dy  =  (x2 + 1) dx
On integrating both sides we obtain,

2 y dy  =  (x2 + 1) dx

         y2  =  1/3 x3 + x + C
Example 7. Solve the given differential equation using the variable separable
method.

Solution: For solving the above given differential equation we will first separate
the variables as follows.
Given is,

Applying the variable separable method, we obtain,

Consequently, we have,

On integrating both sides, we have,

Or, 2 ln y = x + ln x + K
On expressing ‘y’ as explicit function of ‘x’, we have,

Hence, 

Figure 10.2 illustrates the solution graph when we take the characteristic constant
value as,  K = 1.
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Fig. 10.2 Characteristic Solution Graph for 

Example 8. Evaluate to obtain the particular solution for the given differential
equation.

Given is, x = 0 while y = 1.
Solution: The above differential equation is evaluated using the variable separable
method as follows.
Given is,

By separating the variables, we obtain,

dy = (6 – 2y) dx

On integrating both sides we have,
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Subsequently,

…(3)

Applying the given values in Equation (3) as x = 0 while y = 1, we have,

Consequently,

We substitute this value of ‘K’ in Equation (3) and obtain,

Simplifying we have,

When we take ‘e’ on both the sides then we have,

Hence, 

Therefore, 

Applying this value of ‘y’ to the left-hand side of the given differential equation we
simplify as follows.
Given is,
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Applying the valuein  the above equation we have,

  = 6
  = Right-Hand Side

When specifically,   x = 0,   y = 3 – 2e0 = 1.

Therefore, the particular solution is specified as  .

Figure 10.3 represents the solution graph fordefining the curve that passes through
(0, 1).

Fig. 10.3 Solution Graph for 

Check Your Progress

4. What is an explicit solution of a differential equation?
5. What is an implicit solution of a differential equation?
6. What form of differential equation is solvable by variable separation method?



Differential Equations

NOTES

Self-Instructional
196 Material

10.5 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. A differential equation is an equation for a function that relates the values of
the function to the values of its derivatives.

2. An Ordinary Differential Equation (ODE) is an equation that contains an
unknown function of one real or complex variable ‘x’, its derivatives and
some specified functions of ‘x’. Generally, the unknown function is
characterized by a variable denoted by ‘y’, which consequently depends
on ‘x’. Hence, ‘x’ is termed as the independent variable of the equation.

3. The order of the differential equation is defined with regard to the order of
the highest derivative included in the equation.

4. A function f(x) in an interval x ∈ I which includes nth derivative along with
all the derivatives of lower order for all x ∈ I is termed as an ‘explicit
solution’ for the specified differential equation provided that the following
condition is satisfied,

F[x,  f (x),  f ′(x),  f ′′ (x), . . . . . . . . , f (n) (x)]  =  0 for all  x ∈ I
5. A relation g(x, y) = 0 is termed as the ‘implicit solution’ for a differential

equation when as a minimum it expresses one real function ‘f’ for the variable
‘x’ on the specified interval ‘I’.

6. Variables separable method is possibly used only when the differential
equation is expressed in the form, A(x) dx + B(y) dy = 0. Here A(x) is
termed as the function of only ‘x’ while B(y) is termed as the function of
only ‘y’.

10.6 SUMMARY

• A Differential Equation (DE) comprises of one or more expressions including
derivatives of one dependent variable ‘y’ with reference to another
independent variable ‘x’, such as

  

• An ordinary differential equation is specifically a differential equation that is
defined for a single function. An ordinary differential equation comprises of
ordinary derivatives. Therefore the ordinary differential equations manage
the functions of a single variable and their derivatives.

• A Partial Differential Equation (PDE) is a differential equation of the form
that contains unknown multivariable functions and their partial derivatives.
Therefore the partial differential equations deal with functions of several
variables.
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• Differential equations are categorized with respect to order, since the order
of a differential equation is defined with regard to the order of the highest
order derivative that exists or occurs in the equation.

• The degree of any differential equation is defined with regard to the power
of the highest order derivative that exists in the equation.

• Ordinary differential equations of nth-order has ‘n’ linearly independent
solutions.

• A function f(x) in an interval x ∈ I which includes nth derivative along with
all the derivatives of lower order for all x ∈ I is termed as an ‘explicit
solution’ for the specified differential equation provided that the following
condition is satisfied,

F[x,  f (x),  f ′(x),  f ′′ (x), . . . . . . . . , f (n) (x)]  =  0 for all  x ∈ I
• A relation g(x, y) = 0 is termed as the ‘implicit solution’ for a differential

equation when as a minimum it expresses one real function ‘f’ for the variable
‘x’ on the specified interval ‘I’.

• The variables separable method is specifically used for solving the differential
equations of first order and first degree.

10.7 KEY WORDS

• Differential equation: An equation involving derivatives of a function or
functions.

• Derivative: An expression representing the rate of change of a function
with respect to an independent variable.

• Integral: An integral assigns numbers to functions in a way that can describe
displacement, area, volume, and other concepts that arise by combining
infinitesimal data.

10.8 SELF ASSESSEMNT QUESTIONS AND
EXERCISES

Short Answer Questions
1. Obtain the order and degree for the following differential equation.

2sin 0dy x
dx

2. Obtain the order and degree for the following differential equation.

3 2 0y y y
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3. Evaluate the given equation for obtaining the particular solution
 y′ = 10   For x = 2 and y = 3.

4. Solve the given differential equation using the variable separable method.
 y dy = (x + 5) dx

Long Answer Questions
1. Describe variable separable method to solve differential equations with the

help of an example.
2. Evaluate the given equation for obtaining the particular solution

2 5y y  , For x = 0 and y = 1.

3. Evaluate the given equation for obtaining the particular solution which must
satisfy the initial value conditions where, f(0) = 1  and f (0) = – 5
f(t) = c1et  +  c2e–6t  +  2cos t.

4. Solve the given differential equation using the variable separable method

10 ( 1) (2 1)dyx y x x
dx .

5. Evaluate to obtain the particular solution for the given differential equation

6 12,dy y
dx  Given is, x = -1 while y = 1.

10.9 FURTHER READINGS

Shah, Nita H. 2015. Ordinary and Partial Differential Equations: Theory and
Applications. New Delhi: PHI Learning Pvt. Ltd.

Kapoor, N. M. 1997. A Text Book of Differential Equations. New Delhi:
Pitambar Publishing.

Gupta, P.N. 2005. Comprehensive Differential Equations: Paper II. New Delhi:
Laxmi Publications.
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UNIT 11 HOMOGENEOUS
EQUATIONS AND FIRST
ORDER LINEAR
EQUATIONS

Structure
11.0 Introduction
11.1 Objectives
11.2 Homogeneous Equations in ‘x’ and ‘y’

11.2.1 Solving Homogeneous Differential Equations
11.3 First Order Linear Equations
11.4 Answers to Check Your Progress Questions
11.5 Summary
11.6 Key Words
11.7 Self Assessment Questions and Exercises
11.8 Further Readings

11.0 INTRODUCTION

In this unit, you will learn to solve homogeneous differential equations and first
order linear equations. In mathematics, an ordinary differential equation is a
differential equation with one or more functions of one independent variable and
its derivatives. Among ordinary differential equations, linear differential equations
play a prominent role for several reasons. Most elementary and special functions
in physics and applied mathematics are solutions of linear differential equations.

A differential equation can be homogeneous in either of two respects. A first
order differential equation is said to be homogeneous if it may be written f (x, y)
dy = g (x, y) dx where f and g are homogeneous functions of the same degree of
x and y. In this case, the change of variable y = ux leads to an equation of the form

 which is easy to solve by integration of the two members.

A differential equation is homogeneous, if it is a homogeneous function of
the unknown function and its derivatives. In the case of linear differential equations,
this means that there are no constant terms. The solutions of any linear ordinary
differential equation of any order may be put in deduced form by integration from
the solution of the homogeneous equation obtained by removing the constant term.
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11.1 OBJECTIVES

After going through this unit, you will be able to:
• Solve homogeneous equations by substitution method
• Solve first order linear equations

11.2   HOMOGENEOUS EQUATIONS IN ‘x’ AND ‘y’

In mathematics, a differential equation is termed as a homogeneous equation
when it is ‘a homogeneous function of the unknown function and its
derivatives’.
Definition. A differential equation of the first order is termed as homogeneous
equation when it is expressed as,

f (x, y) dy = g (x, y) dx
In this equation ‘f’ and ‘g’ are considered as the homogeneous functions of the
similar or equivalent degree of ‘x’ and ‘y’.
Definition. The Ordinary Differential Equation (ODE) of first order expressed
in the following differential form is termed as a homogeneous equation.

P (x, y) dx + Q (x, y) dy = 0                               …(1)
In this Equation (1) both ‘P’ and ‘Q’ are the homogeneous functions of the
similar or equivalent degree. Consistently it can be expressed in the form,

dy/dx  =  f (x, y)
Where the function f(x, y) can be expressed as,

f (x, y) = g (y/x)
On substituting ‘y = ux’ in the homogeneous equation will reduce the form of the
homogeneous equation to an equation of the form which will include ‘x’ as the
independent variable and ‘u’ as the new dependent variable where the variables
can be separable.
Definition. The Ordinary Differential Equation or ODE of First Order when
expressed in the below given form then it is termed as the Homogeneous equation
type.

M (x, y) dx + N (x, y) dy = 0
In this Homogeneous equation, both the functions M (x, y) and N (x, y) are
considered as Homogeneous Functions of the similar degree ‘n’.
Now we multiply each variable with a parameter ‘λ’ and obtain the equations,

M (λx, λy) = λn M (x, y)
And, N (λx, λy) = λn N (x, y)
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Therefore,

Consequently, a differential equation of first order of the form,
dy/dx  =  f (x, y)

is termed as the homogeneous equation when the right-hand side of the equation
for all ‘t’ satisfies the condition,

 f (tx, ty) =  f (x, y)
Additionally, we can state that the right-hand side of the equation is termed as the
homogeneous function of the order ‘0’ with regard to the variables ‘x’ and
‘y’, represented as,

f (tx, ty)  =  t 0 f (x, y)  =  f (x, y)
We can also represent a homogeneous differential equation system as,

y ′ = f (x/y)
And in the differential system as,

P (x, y) dx + Q (x, y) dy = 0
In this equation, the function P (x, y) and the function Q (x, y) are the homogeneous
functions having the similar or equivalent degree.
Definition of Homogeneous Function.
A function P (x, y) is termed as a homogeneous function of degree ‘n’ when
the below given relationship is valid for all ‘t > 0’:

P (tx, ty)  =  t n P (x, y)

11.2.1 Solving Homogeneous Differential Equations

For solving homogeneous equation we can use the method of substitution, i.e., by
substituting ‘y = ux’ which will in turn result in the form or system of separable
differential equation.
Consider the differential equation of the form,

(a1x + b1y + c1) dx  +  (a2x + b2y + c2) dy  =  0
This differential equation system can be converted to the system of variable
separable equation. For this we have to move or shift the origin of the coordinate
system towards the point of intersection on the system of specified straight lines.
The system of differential equation can only be transformed or converted into the
system of variable separable equation when these straight lines exist parallel. We
use the method change of variable given below to obtain the required solution,

z = ax +  by
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Example 1. Solve the following differential equation.
(2x + y) dx – xdy = 0

Solution: The given differential equation is solved as follows.
It is obvious that at dx and dy both the polynomials P (x, y) and Q (x, y) are
homogeneous functions of the first order. Hence, the given specific differential
equation is also homogeneous.
Assume that y = ux.
Here ‘u’ is defined as the new function that is dependent on ‘x’.
Subsequently we have,

dy = d (ux) = udx + xdu
We substitute these to the given differential equation as follows.
Given differential equation is,

(2x + y) dx – xdy = 0
On substituting we have,

(2x + ux) dx – x (udx + xdu) = 0
Therefore, on simplifying the above equation and then on dividing both the sides
by ‘x’ we obtain,

xdu = 2 dx  or du = 2 (dx/x)
Integrating both sides of du = 2 (dx/x) we have,

Here ‘C’ is the constant of integration.
Considering the previous variable ‘y’ we can express,

Therefore, the given differential equation has the following two solutions:

Example 2. Solve the following differential equation.

Solution: The given homogeneous differential equation is solved as follows.
From the right-hand side of the equation it is evident that,

x  ≠  0  and   y  ≠ 0
On substituting y = ux,  y ′ = u ′ x  +  u
Consequently, we have,
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 Now we integrate both the sides of this equation as follows,

Denote the constant 2C as only ‘C’ for solving the equation.
Therefore, we obtain,

Hence, we can write the general solution for the given differential equation as,

Example 3. Solve the following differential equation.
(xy + y2) y ′ =  y2

Solution: The given differential equation is solved as follows.
The given differential equation is of the form homogeneous equation.
It can also be represented as,

  

        

Now we make the substitution as,     y = ux.
Subsequently,       y ′ = u ′ x  +  u
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We substitute these values of y and y ′ into the given differential equation to obtain,
(xux + u2x2) (u ′ x + u) = u2x2

⇒ ux2 (u + 1) (u ′ x + u) = u2x2

Simplify the equation by dividing both sides of the equation with ux2.
The form ‘x = 0’ cannot be the solution for the equation. We further find the
solution for the given differential equation as,

u = 0    or   y = 0
This can be one of the solutions for the given differential equation.
We obtain the result as,

(u + 1) (u ′ x + u) = u
⇒ u ′ x (u + 1) + u2 + u = u
⇒ u ′ x (u + 1) =  – u2

⇒

Now integrate both the sides of the equation for finding the general solution as
follows.

⇒                   …(2)

We substitute ‘u = y/x’ in the expression of Equation (2).
Then the Equation (2) becomes,

⇒

⇒  y lny = Cy + x
The specified expression in the explicit inverse function x (y) is denoted as,

x = y lny – Cy
Because, in the above expression ‘C’ is an arbitrary real number, hence before the
constant ‘C’ the ‘–’ sign can be replaced with the ‘+’ sign to obtain the equation,

x = y lny + Cy
Therefore, the given or specified differential equation has the following solutions,

x = y lny + Cy,    y = 0



Homogeneous Equations
and First Order Linear

Equations

NOTES

Self-Instructional
Material 205

Check Your Progress

1. What is a homogeneous equation?
2. What is a homogeneous function?

11.3 FIRST ORDER LINEAR EQUATIONS

The linear differential equations of the First Order are the specific system of
the  differential equations for which the required solution is obtained with regard
to the variable coefficients. Basically, nearly all the system of equations that are
solved explicitly essentially involves the coefficients to be constant.
Definition. A first order linear differential equation is a differential equation
of the form y ′ + p (x)y = q (x).
Definition. The system of the linear differential equation of the first order
can be expressed in the form,

                   …(3)

Where ‘P’ and ‘Q’ are termed as the continuous functions on a given or specified
interval.
For example, the equation x y ′ + y = 2x  is a linear equation, since for ‘x ≠ 0’ can
be expressed in the form,

                  …(4)

The above differential equation cannot be solved using the separable method because
we cannot factor the y ′ expression by means of function of ‘x’ times a function of
‘y’.
Consequently, this equation can be solved using the ‘Product Rule’ as,

x y ′  +  y  =  (xy) ′
Therefore,

(xy) ′ =  2x
On integrating the above equation on both the sides, we have,

xy = x2 + C      or       y = x + (C/x)
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Method 1. Essentially, all the linear differential equations of first order are
solved by multiplying both the sides of the expression defined in Equation (3) using
an appropriate function I(x) termed as the integrating factor.
When Equation (3) is multiplied by the integrating factor I (x) then we obtain
the derivative of the product I (x) y as,

I (x) (y ′ +  P (x) y)  =  (I (x) y) ′                                             ...(5)
Subsequently, we can estimate the function ‘I’ and the Equation (3) becomes,

(I (x) y) ′ =  I (x) Q (x)                                ...(6)
On integrating both sides of the Equation (4), we obtain,

I (x) y  = I (x) Q (x) dx  +  C                                ...(7)

We obtain the following solution,

                  ...(8)

For finding ‘I’ the Equation (5) is expanded and simplified by cancelling similar
terms to obtain,

I (x) y ′ + I (x) P (x) y  =  (I (x) y) ′
=   ′ (x) y  +  I (x) y ′

I (x) P (x)  =  I ′ (x)
This equation for ‘I’ is termed as the separable differential equation and is solved
as,

Here ‘A = ±ec ’. Considering ‘A = 1’ we obtain a particular integrating factor
as,

For solving the linear differential equation of the form,
y ′ +  P (x) y  =  Q (x)                                …(9)

both the sides of the Equation (9) are multiplied by the integrating factor to integrate
the equation.
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Example 4. Solve the following differential equation.

Solution: The above given differential equation is linear differential equation because
it has the form of Equation (3) in which,

P (x) = 3x2  and  Q (x)  = 6x2

Use the following integrating factor,

For solving the given linear differential equation, we multiply both the sides of the
equation with  to obtain,

Then, 

Integrate both the sides of the equation to obtain,

Example 5. Solve the following differential equation.
y ′ +  2xy = 1

Solution: The given differential equation ‘y ′ +  2xy = 1’ has the standard linear
equation form. We first find the integrating factor as,

On multiplying both the sides of the equation by the above integrating factor we
obtain,

Hence, 

Consequently, 

 Therefore, 
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Method 2. Considering the first order linear differential equation is a
differential equation of the form,

 y ′ + p (x)y = q (x)                 …(10)
For solving the linear differential equation we use the specific factor termed as
an integrating factor. Fundamentally, an integrating factor can be defined as a
specific function f (x) which is used to multiply both sides of the Equation (10) as
follows,

f (x) [ y ′ + p (x) y]  =  f (x) q (x)
f (x) y ′ + f (x) p (x) y  =  f (x) q (x)

This function satisfies the equations of the form,
f (x) y ′ + f (x) p (x) y  =  f (x) y ′  +  f ′(x) y

This specifies that the function ‘f’ must satisfy the following form of separable
differential equation,

f ′(x) = f (x) p (x)
 On further simplying we obtain,

  …(11)

Equation (11) represents the integrating factor which is essentially used for solving
linear differential of first order.
Example 6. Solve the following differential equation.

 y ′ + ex y = ex

Solution: The above given differential equation is solved as follows.
Because this equation is of the form,

p (x) = q (x) = ex

Hence the integrating factor will be,
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On multiplying both the sides of equation with  we obtain,

On integrating both sides we obtain,

Example 7. Solve the following differential equation.

Solution: The given differential equation is solved as follows.
Since the given equation is of the form linear differential equation hence we will
express this equation in the following standard form.

…(12)

Consequently, we define the integrating factor as,

Here P (x) is considered as the coefficient of the ‘y’ term as,

On multiplying the standard form given in Equation (12), by I (x) = x – 3 we obtain,

⇒ …(13)

Now we integrate both the sides of the Equation (13) with respect to ‘x’, we
obtain,
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⇒ x– 3 y = – x – 1 + C
Therefore, the solution is,

y = – x 2 + C x 3

Check Your Progress

3. Define first order linear differential equation.
4. Give an example of a linear equation which cannot be solved using the

separable method.

11.4 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. A differential equation of the first order is termed as homogeneous equation
when it is expressed as, f (x, y) dy = g (x, y) dx. In this equation ‘f’ and ‘g’
are considered as the homogeneous functions of the similar or equivalent
degree of ‘x’ and ‘y’.

2. A function P (x, y) is termed as a homogeneous function of degree ‘n’
when the below given relationship is valid for all ‘t > 0’: P (tx, ty)  =  t n P
(x, y).

3. A first order linear differential equation is a differential equation of the form
y ′ + p (x)y = q (x).

4. x y ′ + y = 2x  is a linear equation, since for ‘x ≠ 0’ can be expressed in the
form,

The above differential equation cannot be solved using the separable method
because we cannot factor the y ′ expression by means of function of ‘x’
times a function of ‘y’.

11.5 SUMMARY

• A differential equation of the first order is termed as homogeneous equation
when it is expressed as, f (x, y) dy = g (x, y) dx. In this equation ‘f’ and ‘g’
are considered as the homogeneous functions of the similar or equivalent
degree of ‘x’ and ‘y’.
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• The Ordinary Differential Equation (ODE) of first order expressed in the
following differential form is termed as a homogeneous equation. In the
below equation both ‘P’ and ‘Q’ are the homogeneous functions of the
similar or equivalent degree.
P (x, y) dx + Q (x, y) dy = 0

• A function P (x, y) is termed as a homogeneous function of degree ‘n’ when
the below given relationship is valid for all ‘t > 0’: P (tx, ty)  =  t n P (x, y).

• A first order linear differential equation is a differential equation of the form
y ′ + p (x)y = q (x).

11.6 KEY WORDS

• Homogenous function: A homogeneous function is one with multiplicative
scaling behavior: if all its arguments are multiplied by a factor, then its value
is multiplied by some power of this factor.

• Linear equation: An equation between two variables that gives a straight
line when plotted on a graph.

• Differential equation: An equation involving derivatives of a function or
functions.

11.7 SELF ASSESSEMNT QUESTIONS AND
EXERCISES

Short Answer Questions
1. Solve the following differential equation.

x + dx – xdy = 0
2. Solve the following differential equation.

xdx – (x - 2y)dy = 0
3. Solve the following differential equation.

(x + y)dy = x2dx
Long Answer Questions

1. Solve the following differential equation.

��
��

− �2� = �2 + 6� 

2. Solve the following differential equation.
y ′ + xy = x – y.
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3. Solve the following differential equation.
2y ′ - ex y = 5ex + x.

4. Solve the following differential equation.

2�
��
�� + �2 = �2  

5. Solve the following differential equation.
(3xy - 2y2) y ′ = y2

6. Discuss about homogeneous equation and first order linear equations with
the help of examples.

11.8 FURTHER READINGS

Shah, Nita H. 2015. Ordinary and Partial Differential Equations: Theory and
Applications. New Delhi: PHI Learning Pvt. Ltd.

Kapoor, N. M. 1997. A Text Book of Differential Equations. New Delhi:
Pitambar Publishing.

Gupta, P.N. 2005. Comprehensive Differential Equations: Paper II. New Delhi:
Laxmi Publications.
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UNIT 12 LINEAR EQUATIONS OF
ORDER 2 AND VARIATION
OF PARAMETERS
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12.1 Objectives
12.2 Linear Equations of Order 2 with Constant and Variable Coefficients
12.3 Variation of Parameters
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12.5 Summary
12.6 Key Words
12.7 Self Assessment Questions and Exercises
12.8 Further Readings

12.0 INTRODUCTION

In this unit, you will learn how to solve second order differential equations of a
particular type, those that are linear and have constant coefficients. These equations
are prominently used  in the modelling of physical phenomena, for example, in the
analysis of vibrating systems and the analysis of electrical circuits. In mathematics,
variation of parameters, also known as variation of constants, is a general method
to solve non-homogeneous linear ordinary differential equations.

12.1 OBJECTIVES

After going through this unit, you will be able to:
• Describe second order linear equations
• Solve linear differential equations by variation of parameters
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12.2 LINEAR EQUATIONS OF ORDER 2 WITH
CONSTANT AND VARIABLE COEFFICIENTS

Fundamentally, a second order differential equation is defined as an equation of
the form which includes the unknown function ‘y’, its derivatives as y′ and y′′ and
also the variable ‘x’.

The second order linear ordinary differential equation is expressed in
the form,

y′′ +  a(x)y′ +  b(x)y  =  f (x) …(1)
In Equation (1), a(x), b(x) and  f (x) are the functions which are specifically

defined on certain interval ‘I’.
Further, Equation (1) is termed as,

1. Homogeneous when f(x) = 0 for ALL x∈I.
2. Non-Homogeneous when f(x) ≠ 0 for SOME x ∈ I.

Theorem 1. Existence and Uniqueness

Assume that a(x), b(x) and f(x) are defined as the continuous functions on some
interval ‘I’. Then for every  x0 ∈ I,  y0 ∈ ,  z0 ∈ ,  there exists a unique solution
‘y’ for Equation (1) such that,

y (x0) = y0 y′ (x0) = z0

Second order linear homogeneous ordinary differential equation has the following
given form when ‘f(x) = 0’.

y′′ + a(x) y′ + b(x) y = 0
Definition. The linear differential equation of second order or order 2 has
the form of equation as,

…(2)

In Equation (2), the terms P, Q, R and G are termed as the continuous
functions. In addition, when in Equation (2) if we have ‘G(x) = 0’ for all ‘x’ then
the equation is termed as homogeneous linear equation. Therefore, the second
order homogeneous linear differential equation has the form,

…(3)

But if in Equation (2) we have ‘G(x) ≠  0’ for some ‘x’ then the equation is
termed as non-homogeneous linear equation.
For solving the homogeneous linear equation if we assume that ‘y1’ and ‘y2’ are
the two solutions of the homogeneous linear equation then the following
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given linear combination is also considered as the solution for that homogeneous
linear equation:

y = c1y1  +  c2y2

Theorem 2. If y1(x) and y2(x) are both solutions of the linear homogeneous
Equation (3) and, c1 and c2 are considered as the constants, then the following
given function is also defined as a solution to Equation (3).

y(x)  =  c1y1(x)  +  c2y2(x)
Theorem 3. If y1 and y2 are linearly independent solutions of Equation (3) and
P(x) is never ‘0’, then the general solution is given by the equation of the form,

y(x)  =  c1y1(x)  +  c2y2(x) …(4)
Here, c1 and c2 are considered as the arbitrary constants.
To find the particular solutions for a second order linear equation we

consider that the coefficient functions P, Q and R in Equation (3) are considered
as the constant functions, i.e., when the differential equations are of the form,

ay′′ + by′ + cy = 0 ...(5)
Where a, b and c are constants and a ≠ 0.
We consider that the function ‘y’ can be defined by means of constant

times as y′′ its second derivative, as y′ another constant times and as y the third
constant times which will be equal to ‘0’. As per the exponential function property
y = erx, where ‘r’ being the constant, the derivative is a constant multiple of itself,
i.e, y′ = rerx. Additionally, we have y′′ = r2 erx. Therefore, the  Equation (5) has the
solution as y = erx.

Definition: Second Order Linear Homogeneous Equations with
Constant Coefficients

“A second order ordinary differential equation has the following general form
for certain specified function ‘f’.”

y′′ = f (t, y, y′) …(6)
The Equation (6) is considered as linear when ‘f’ is linear in y and y′ and

is represented as,
y′′ = g(t) – p(t) y′ – q (t) y

If not then the equation will be defined as a non-linear equation.
Often the second order linear equation also has the form,

P (t) y′′ + Q (t) y′ + R (t) y  =  G (t) …(7)
When G(t) = 0 for all ‘t’ then Equation (7) is termed as homogeneous and

else non-homogeneous.
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Characteristic Equation

For solving the second order differential equations with constant coefficients take
the given equation of the form as expressed in Equation (5),

ay′′ + by′ + cy = 0

For Equation (5), as already discussed we assume that the solution has the
form,

 y = ert

We substitute this value of ‘y’ in the above differential equation and have the
following equation,

ar2 ert  +  brert  +  cert  = 0
Taking ert as common the equation is simplified as follows,

ert  (ar2  +  br  +  c) = 0
Therefore, we obtain,

ar2  +  br  +  c = 0 …(8)
The Equation (8) is termed as the characteristic equation for the differential

equation. The ‘r’ can be solved either by factoring or by quadratic formula.

General Solution

For obtaining the general solution we use the quadratic formula on the Equation
(8), i.e., the characteristic equation of the form,

ar2  +  br  +  c = 0
We get r1 and r2 as two solutions.

Following are the three feasible or possible consequences (results):
• The roots r1, r2 are real and r1 ≠ r2.
• The roots r1, r2 are real and r1 = r2.
• The roots r1, r2 are complex.

Then we can find ‘r’ as,

  

Assuming that roots r1, r2 are real and r1 ≠ r2, then the general solution has the
form,



Linear Equations of
Order 2 and Variation

of Parameters

NOTES

Self-Instructional
Material 217

Theorem 4. If the characteristic equation as stated in the Equation (8) has two
distinct real roots r1 and r2 then the general solution for the Equation (5) is
given by the equation of the form,

Where c1 and c2 are arbitrary constants. If the characteristic equation as
stated in the Equation (8) has only a single or repeated real root r then the
general solution for the Equation (5) is given by the equation of the form,

Where c1 and c2 are arbitrary constants. If the characteristic equation as
stated in the Equation (8) has non-real or complex roots α ± βi then the general
solution for the Equation (5) is given by the equation of the form,

Where c1 and c2 are arbitrary constants.
Definition: Second Order Linear Differential Equations with Variable Coefficients
For the given functions a1, a0, b :   → , the differential equation in the unknown
function y :   →  given by the equation of the form,

y′′ +  a1 (t) y′ +  a0 (t) y  =  b(t) … (9)
The Equation (9) is termed as the second order linear differential

equation with variable coefficients. The Equation (9) is termed as homogeneous
iff for all t ∈  holds,

b(t) = 0
The Equation (9) is termed as constant coefficients iff  a1, a0 and b are

constants.
A linear homogeneous second order equation with variable coefficients is
expressed as,

y′′ +  a1 (x) y′ +  a2 (x) y  = 0 … (10)
In the Equation (10), the terms a1 (x) and a2 (x) are defined as the

continuous functions on the interval [a, b].

Linear Independence of Functions

Definition. The functions y1 (x), y2 (x), . . . . , yn (x) are termed as linearly
dependent on the interval [a, b] when it includes constants as α1, α2, . . . . , αn,
not all ‘0’, such that for all values of ‘x’ from this interval, then the following
identity holds.

α1 y1 (x) + α2 y2 (x) + . . . . + αn yn (x) ≡ 0
When α1 = α2 = α3 = . . . . . = αn = 0, then the functions  y1 (x), y2 (x),...,

yn (x) are termed as linearly independent on the interval [a, b].
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Example 1. Solve the following equation for finding all solutions of ‘y’.

Solution: The given differential equation is solved as follows.
We will write the equation in the following form,

The function is considered as an integrating factor..

Consequently,

12.3 VARIATION OF PARAMETERS

The variation of parameters also sometimes termed as variation of constants,
is a general method used for solving the inhomogeneous linear ordinary differential
equations. Fundamentally, the variation of parameters method is a general
method used for undetermined coefficients to find a particular solution for,

…(11)

But this method has two disadvantages. First, we need the complementary
solution to solve the problem. Second, for solving the equation we have to work
with a couple of integrals.

For deriving the formula for variation of parameters we have to acknowledge
that the complementary solution to Equation (11) has the equation of the form,

The general solution for the homogeneous differential equation has,
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The complementary solution can be expressed for y1(t) and y2(t), a
fundamental set of solutions. To obtain a pair of functions, u1(t) and u2(t) such
that,

Definition. Variation of Parameter. For the differential equation of the form,

Consider that y1(t) and y2(t) are defined as the fundamental set of solutions
for,

Consequently, the Wronskian and the particular solution for the non-
homogeneous differential equation includes,

Example 2. Solve the following differential equation for finding the general solution.

Solution: The given differential equation is solved as follows.
Because the variation of parameters formula essentially involves a coefficient

hence the differential equation will have the form,

Then for this differential equation the complementary solution has the form,

Therefore, we get the functions,

Then for these two functions the Wronskian is defined as,

Consequently the particular solution is,



Linear Equations of
Order 2 and Variation
of Parameters

NOTES

Self-Instructional
220 Material

  

 

Similarly, the general solution is,

CHECK YOUR PROGRESS

Check Your Progress

1. When is the equation y′′ + a(x) y′ + b(x) y = f (x) homogeneous and
non-homogeneous?

2. What is a second order linear differential equation?
3. If r1 and r2 as two solutions of the characteristic equation of the form,

ar2  +  br  +  c = 0 then what are three possible consquences?

12.4 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1.  y′′ + a(x) y′ + b(x) y = f (x) is homogeneous when f(x) = 0 for ALL x ∈
I and non-Homogeneous when f(x) ≠ 0 for SOME x ∈ I.

2. The linear differential equation of second order or order 2 has the form of
equation as,

The terms P, Q, R and G are termed as the continuous functions.
3. (i) The roots r1, r2 are real and r1 ≠ r2.

(ii) The roots r1, r2 are real and r1 = r2.
(iii) The roots r1, r2 are complex.
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12.5 SUMMARY

• The second order linear ordinary differential equation is expressed in the
form,
y′′ + a(x) y′ + b(x) y = f (x) where a(x), b(x) and f (x) are the functions
which are specifically defined on certain interval ‘I’.

• y′′ + a(x) y′ + b(x) y = f (x) is homogeneous when f(x) = 0 for ALL x ∈ I
and non-Homogeneous when f(x) ≠ 0 for SOME x ∈ I.

• The linear differential equation of second order or order 2 has the form of
equation as,

The terms P, Q, R and G are termed as the continuous functions.
• A second order ordinary differential equation has the following general form

for certain specified function ‘f’,  y′′ = f (t, y, y ′) is considered as linear
when ‘f’ is linear in y and y ′ and is represented as, y′′ = g(t) – p(t) y ′ – q
(t) y. If not then the equation will be defined as a non-linear equation.

• Characteristic equation of the form, ar2  +  br  +  c = 0. We get r1 and r2 as
two solutions.

• The functions y1 (x), y2 (x), . . . . , yn (x) are termed as linearly dependent
on the interval [a, b] when it includes constants as α1, α2, . . . . , αn, not all
‘0’, such that for all values of ‘x’ from this interval, then the following identity
holds. α1 y1 (x) + α2 y2 (x) + . . . . + αn yn (x) ≡ 0 When α1 = α2 = α3 =
. . . . . = αn = 0, then the functions  y1 (x), y2 (x), . . . . , yn (x) are termed as
linearly independent on the interval [a, b].

• The variation of parameters also sometimes termed as variation of constants,
is a general method used for solving the inhomogeneous linear ordinary
differential equations.

12.6 KEY WORDS

• Homogenous function: A homogeneous function is one with multiplicative
scaling behavior: if all its arguments are multiplied by a factor, then its value
is multiplied by some power of this factor.

• Linear equation: An equation between two variables that gives a straight
line when plotted on a graph.

• Differential equation: An equation involving derivatives of a function or
functions.
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• Continuous function:  A continuous function is a function for which
sufficiently small changes in the input result in arbitrarily small changes in the
output.

12.7 SELF ASSESSEMNT QUESTIONS AND
EXERCISES

Short Answer Questions

1. Solve the following equation for finding all solutions of ‘y’.

��′ = �2 + � 

2. Solve the following equation for finding all solutions of ‘y’.

��′ = 3� − 2� 

3. Solve the following equation for finding all solutions of ‘y’.

��′ + � = � 

Long Answer Questions

1. Solve the following differential equation by variation of parameters method
for finding the general solution.

�′′ − �2 = ��� � 

2. Solve the following differential equation by variation of parameters method
for finding the general solution.

5�′′ = 10� − cos (3�) 

3. Solve the following differential equation by variation of parameters method
for finding the general solution.

�′′ − � = ��� � 

12.8 FURTHER READINGS
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Kapoor, N. M. 1997. A Text Book of Differential Equations. New Delhi:
Pitambar Publishing.

Gupta, P.N. 2005. Comprehensive Differential Equations: Paper II. New Delhi:
Laxmi Publications.
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UNIT 13 LAPLACE TRANSFORM
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13.1 Objectives
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13.6 Summary
13.7 Key Words
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13.9 Further Readings

13.0 INTRODUCTION

In this unit, you will learn about Laplace transform and its properties. Further, you
will learn to find inverse Laplace Tranform. The method of Laplace transforms is a
system that relies on algebra to solve linear differential equations. While it might
seem to be a somewhat cumbersome method at times, it is a very powerful tool
that enables us to readily deal with linear differential and integral equations. The
Laplce Transform also has the advantage that it solves initial value problems directly
without first finding a general solution. The ready tables of Laplace transforms
make it easy to solve differential equations.

13.1 OBJECTIVES

After going through this unit, you will be able to:
• Define Laplace transform
• Find Inverse Laplace transform
• Solve differential equations using Laplace transform

13.2 LAPLACE TRANSFORM

The Laplace transform method is defined as a system that depend on algebra
instead of calculus-based methods for solving linear differential equations. The
Laplace transform method is specifically used for solving differential equations. In
addition, this method is considered as an efficient and proficient alternative to
variation of parameters method and uncertain coefficients. The Laplace transform
method is specifically beneficial for input terms which are defined piecewise either
periodic or impulsive.
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Definition. Let f(t) be defined for t ≥ 0. The Laplace transform of f(t) denoted

by F(s) or  is an integral transform given by the Laplace integral:

Provided that this improper integral exists, i.e., the integral must be
convergent. Therefore the Laplace transform is a process that specifically
transforms a function of ‘t’, i.e., a function of time domain defined on [0, ∞), to
a function of ‘s’, i.e., of frequency domain. Characteristically, F(s) is the Laplace
transform or basically just the transform of f(t). The two functions f(t) and
F(s) are together termed as the Laplace transform pair.

When the functions of ‘t’ are continuous on [0, ∞), then the above defined
Laplace transformation towards the frequency domain is ‘one-to-one’, i.e.,
different types of the continuous functions will show different transformations.
Additionally, the kernel for the Laplace transform is unit less, the e–st in the
integrand. Hence, the unit of ‘s’ can be defined as reciprocal of ‘t’, therefore
‘s’ can be stated as a variable which will denote complex frequency.

Consider that f(t) = 1.
Then,

And s > 0.
The Laplace transform is,

The integral will be divergent for s ≤ 0, though for s > 0 it will converge
to,
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Now consider that,

Therefore,

And s > a.
The Laplace transform is,

The integral will be divergent for s ≤ a, though for s > a it will converge
to,

Definition. A function f(t) is termed as piecewise continuous if it has
only finitely many discontinuities on any interval [a, b] and that both one-sided
limits exist as ‘t’ approaches each of those discontinuity from within the interval.
Then ‘f’ could have removable and/or jump discontinuities only and it cannot have
any infinity discontinuity.
 Theorem 1. Assume that,

1. The ‘f’ is considered as piecewise continuous on the interval 0 ≤ t ≤ A for
any A > 0.

2. The  when t ≥ M, for any real constant ‘a’ and some positive
constants K and M. This specifies that ‘f’ is of exponential order.

Then the Laplace transform exists for s > a.

This theorem states the sufficient condition for the existence of Laplace
transforms and this cannot be a necessary condition. A function essentially may
not satisfy the two conditions to have a Laplace transform.
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Some Significant Properties of Laplace Transform

Following are some significant properties of Laplace transform:

1.

2.

3.

4. The derivative of Laplace transforms

Or equivalently,

Therefore,

 

 

Properties 2 and 3 specify that Laplace transform is linear.
Fundamentally, the derivatives of Laplace transform satisfy,

Or equivalently,

Table 13.1 defines the different types of Laplace transforms.

Table 13.1 Types of Laplace Transforms
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Check Your Progress

1. How is Laplace transform defined?
2. When is a function termed as piecewise continuous?

3. What is the Laplace transform of ?

13.3 INVERSE LAPLACE TRANSFORM

Definition. When  then F(t) is said to be the inverse Laplace
transform of f(s). Hence we can express as,

Theorem 2. Linearity
The inverse Laplace transform is linear and is expressed as,

Theorem 3.

If   

Then   

Theorem 4.

If  

Then, 

Definition. If we have the transform as F(s) then for finding the inverse Laplace
transform of F(s) we use the given expression,

Example 1. Find the inverse Laplace transform of the following;
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Solution. We find the inverse Laplace transform as follows.
Given is,

Using the equation,

We have,

      

13.4 SOLVING DIFFERENTIAL EQUATIONS USING
LAPLACE TRANSFORMS

The Laplace transform can be used for solving the differential equations. Consider
the following linear homogeneous ordinary differential equation of the form,

 

Consider that,
Y(s) = L[y(t)](s)
We will derive a new equation for Y(s) for solving y(t) by taking inverse

transform.
Taking the Laplace transform on both the sides of the given differential

equation, we obtain,

 
The Laplace transform of the function ‘0’ will be ‘0’.
Solving the left-hand side of the differential equation, we obtain,

 

Using the Laplace transform formula for L[y′′] and L[y′] we have,

 

Applying y(0) = 2,
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Consequently we obtain,

  

Therefore, the differential equation using Laplace transformed is,

 

This equation is considered as the linear algebraic equation for Y(s).
We solve for Y(s) to obtain,

 

Simplifying this expression with the help of partial fractions, we have,

 

Using the inverse transforms we obtain,

 
The linearity method of the inverse transform is used to obtain,

 

Here ‘L’ is representing Laplace transform.

Example 2. Solve the given differential equation using Laplace transform method,

Solution: The differential equation is solved as follows.
On transforming using Laplace transform on both the sides of the equation,

Further simplify for finding  ,
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To obtain the inverse transform y(t), we use partial fraction,

Putting the values as,
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This expression resembles to the Laplace transform as,

Hence,

Check Your Progress

4. Define inverse Laplace transform.
5. Write the expression which shows that Laplace transform is linear.

13.5 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. Let f(t) be defined for t ≥ 0. The Laplace transform of f(t) denoted by F(s)
or  is an integral transform given by the Laplace integral:

2. A function f(t) is termed as piecewise continuous if it has only finitely many
discontinuities on any interval [a, b] and that both one-sided limits exist as
‘t’ approaches each of those discontinuity from within the interval. Then ‘f’
could have removable and/or jump discontinuities only and it cannot have
any infinity discontinuity.

3. .

4. When  then F(t) is said to be the inverse Laplace transform
of f(s). Hence we can express as,

5.
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13.6 SUMMARY

• Let f(t) be defined for t ≥ 0. The Laplace transform of f(t) denoted by F(s)
or  is an integral transform given by the Laplace integral:

• F(s) is the Laplace transform or basically just the transform of f(t). The two
functions f(t) and F(s) are together termed as the Laplace transform pair.

• A function f(t) is termed as piecewise continuous if it has only finitely many
discontinuities on any interval [a, b] and that both one-sided limits exist as
‘t’ approaches each of those discontinuity from within the interval. Then ‘f’
could have removable and/or jump discontinuities only and it cannot have
any infinity discontinuity.

• When  then F(t) is said to be the inverse Laplace transform
of f(s). Hence we can express as,

• The inverse Laplace transform is linear and is expressed as,

• If  

Then  

• If  

Then, 

• If we have the transform as F(s) then for finding the inverse Laplace transform
of F(s) we use the given expression,

13.7 KEY WORDS

• Improper integral: An improper integral is a definite integral that has either
or both limits infinite or an integrand that approaches infinity at one or more
points in the range of integration.



Laplace Transform

NOTES

Self-Instructional
Material 233

• Linear differential equation: A linear differential equation is a differential
equation that is defined by a linear polynomial in the unknown function and
its derivatives.

• Piecewise continuous: A function is called piecewise continuous on an
interval if the interval can be broken into a finite number of subintervals on
which the function is continuous on each open subinterval and has a finite
limit at the endpoints of each subinterval.

13.8 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. Write a short note on the properties of Laplace transform.
2. Find the inverse Laplace transform of the following;

 

3. Find the inverse Laplace transform of the following;

 

4. Find the inverse Laplace transform of the following;

5. Find the inverse Laplace transform of the following;

 

Long-Answer Questions

1. Solve the given differential equation using Laplace transform method

 
2. Solve the given differential equation using Laplace transform method

3. Solve the given differential equation using Laplace transform method
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4. Solve the given differential equation using Laplace transform method

 
5. Solve the given differential equation using Laplace transform method

 

13.9 FURTHER READINGS

Shah, Nita H. 2015. Ordinary and Partial Differential Equations: Theory and
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Gupta, P.N. 2005. Comprehensive Differential Equations: Paper II. New Delhi:
Laxmi Publications.
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14.0 INTRODUCTION

In this unit, you will study how to form a partial differential equation(PDE) and
various methods of obtaining solutions of partial differential equation. In mathematics,
a partial differential equation is a differential equation that contains beforehand
unknown multivariable functions and their partial derivatives. PDEs can be used to
describe a wide variety of phenomena such as sound, heat, diffusion, electrostatics,
electrodynamics, fluid dynamics, elasticity, or quantum mechanics. In this unit, you
will learn to form differential equations by eliminating arbitrary constants and
variables. Further, this unit focuses on solving first order partial differential equations.
Charpit’s method and Lagrange’s method for solving partial differential equations
are discussed.

14.1 OBJECTIVES

After going through this unit, you will be able to:
• Discuss partial differential equations
• Form differential equations by eliminating arbitrary constants
• Form differential equations by eliminating arbitrary variables
• Solve first order partial differential equations
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• Solve partial differential equations by using Charpit’s method
• Describe Clairaut’s form
• Solve partial differential equations by using Lagrange’s method

14.2 PARTIAL DIFFERENTIAL EQUATIONS

Typically, the equation which involves derivative (s) of the dependent variable
with reference to the independent variable (s) is termed as the differential equation.
Now let us understand about the Partial Differential Equations or PDEs.
Definition. The differential equation which involves the derivatives of the
dependent variable with regard to only one or single independent variable is
termed as an Ordinary Differential Equation or ODE while the differential
equation which involves the derivatives with regard to more than one
independent variables is termed as the Partial Differential Equations or the
PDEs.
As already discussed in the previous units that the ‘Order’ of the differential
equation is the order of the highest order derivative taking place in the
differential equation.
In addition, the ‘Degree’ of a differential equation is expressed when it is a
polynomial equation in its derivatives. Hence, the ‘Degree’ of the differential
equation for only the positive integer is stated as the highest power of the
highest order derivative in it.
Definition. A relation between the variables, including the dependent variable
and the partial differential coefficients of the dependent variable with the
two or more independent variables is termed as a Partial Differential Equation
or the PDE.
Following are some standard notations for partial differentiation coefficients:

                  …(1)

                  …(2)

                …(3)

Therefore, since the order of a partial differential equation is expressed as the
order of the highest order differential coefficient taking place in the equation while
the degree of the partial differential equation is defined with regard to the degree
of the highest order differential coefficient taking place in the equation, we can
differentiate the above equations into different categories. For example, Equation
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(1) is of first order first degree, Equation (2) is of second order first degree while
Equation (3) is of second order third degree.
Further, when every single term of the equation holds either the dependent variable
or one of its derivatives, then it is termed as the homogeneous form of equation
else non-homogeneous form of equation. Hence, Equation (2) is homogeneous
while Equation (1) is non-homogeneous.
The partial differential equation is stated as linear if the differential co-efficients
that are taking place in the equation are of the first order only or alternatively if in
each of the term, the differential coefficients are not in square or higher powers or
their product and non-linear otherwise.
For example, the equation x2p + y2q = z is considered as linear in ‘z’ and is of
first order.
Therefore, a partial differential equation is the unique form of equation which
includes one or more partial derivatives. The order of the highest derivative
is called the order of the equation. Fundamentally, a partial differential equation
contains more than one independent variable.

Check Your Progress

1. What is the standard from of partial differential equation of first order first
degree?

2. What is the standard from of partial differential equation of second order
third degree?

3. What is the order of a differential equation?

14.3 FORMATION OF PARTIAL DIFFERENTIAL
EQUATIONS

The partial differential equations can be formed either by the elimination of
arbitrary constants or by the elimination of the arbitrary functions from a
relation with one dependent variable and the rest two or more independent variables.
Partial Differential Equations Obtained by the Elimination of Arbitrary
Constants
When a partial differential equation is formed by elimination of arbitrary
constants then we observe the following two conditions.
Condition 1. If the number of arbitrary constants are more than the number of
independent variables in the given relations, then the partial differential equation
obtained by elimination will be of second or higher order.
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Condition 2. If the number of arbitrary constants are equals the number of
independent variables in the given relations, then the partial differential equation
obtained by elimination will be of order one.
Partial Differential Equations Obtained by the Elimination of Arbitrary
Functions
When the partial differential equation is formed by elimination of arbitrary
functions then we observe the following condition.
Condition. When ‘n’ is the number of arbitrary functions, then we may obtain
several partial differential equations, but out of the obtained equations normally
one with two least order is selected.
For example, consider the equation,

z = xf(y) + yg(x)
This equation includes two arbitrary functions ‘f’ and ‘g’.
Thus, we have,

                  …(4)

And, xys = xp + yq – z                                                                        …(5)
The Equations (4) and (5) are the two partial differential equations which are
obtained by elimination of the arbitrary functions. However, the Equation (5)
is lower in order as compared to the Equation (4) so it is the desired partial
differential equation.
Example 1. Form a partial differential equation by eliminating a, b, c from the
relation,

Solution: We obtain the solution as follows.
Evidently in the above given equation a, b, c are three arbitrary constants and z is
a dependent variable which is dependent on x and y. The given relations can be
expressed as follows:

                  …(6)

On differentiating Equation (6) partially with regard to x and y respectively, we
have,

Taking  
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And,            Taking 

Or, …(7)

And,       …(8)

We again differentiate Equation (7) with respect to x, to obtain,

Now substitute from Equation (7) in the above equation to obtain,

Or,              …(9)

Similarly, on differentiating Equation (8) partially with respect to ‘y’ and then

substituting the value of from Equation (8) in the resultant equation, we obtain,

                …(10)

Consequently Equations (9) and (10) are the required ‘partial differential equations’
of first degree and second order.
Example 2. Form the partial differential equation by eliminating the arbitrary
function from the following equation:

Solution: We form the partial differential equation as follows.

Let, …(11)

Where,                 …(12)

Evidently F(u, v) = 0 is an implicit function.
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Therefore,

                …(13)

However,

                …(14)

[Since, as x and y are two independent variables]

And,                 …(15)

Similarly,

                …(16)

                …(17)

Consequently, we substitute the values of in Equation (13),
we obtain,

                …(18)

Eliminating  we obtain,

This is the desired partial differential equation.

14.4 FIRST ORDER PARTIAL ORDER EQUATIONS

A differential equation which includes only first order partial differential
coefficients ‘p’ and ‘q’ is termed as partial differential equation of first order.
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Additionally, if the degrees of ‘p’ and ‘q’ are unity only then it is termed as linear
partial differential equation of first order. If each term of such an equation
contains either the dependent variable or one of the derivatives, then the equation
is considered to be homogeneous and non-homogeneous otherwise.
The partial differential equation of first order in two independent variables
x, y and the dependent variable z can be written in the form,

                …(19)

Also,

Equation (19) then takes the form,
f (x, y, z, p, q) = 0                …(20)

Equation (20) is commonly used in various applications used in geometry and
physics.
Example 3. Find all the functions z(x, y) such that the tangent plane to the graph
z = z(x, y) at any arbitrary point (x0, y0, z (x0, y0)) passes through the origin
characterized by the partial differential equation xzx + yzy “ z = 0.
Solution: We find the functions as follows.
The equation of the tangent plane to the graph at arbitrary point (x0, y0, z (x0, y0))
is,

This plane passes through the origin (0, 0, 0) and therefore, we must have,

                …(21)

Equation (21) holds for all (x0, y0) in the domain of z, z and must satisfy,
xzx + yzy “ z = 0.

This is first order partial difference equation.

Check Your Progress

4. What will be the order of the partial differential equation obtained by
elimination if the number of arbitrary constants are equals the number of
independent variables in the given relations?

5. What is a linear partial differential equation of first order?
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14.5 CHARPIT’S METHOD

In this section we will discuss the systems of first order partial differential equation
and the Charpit’s method for solving nonlinear partial differential equations. The
Charpit’s method is a general method for finding the complete integral of a nonlinear
partial differential equation of first order of the form,

f (x, y, z, p, q) = 0                 …(22)
Basic Notion: The basic notion of the Charpit’s method is to introduce another
partial differential equation of the first order of the form,

g(x, y, z, p, q, a) = 0                              …(23)
It contains an arbitrary constant ‘a’ and is solved as follows.
1. Equations (22) and (23) can be solved for ‘p’ and ‘q’ for obtaining,

p = p(x, y, z, a)          q = q(x, y, z, a)
2. The equation,

               …(24)

Equation (24) is integrable.
Then the solution is,  F(x, y, z, a, b) = 0
Where the a, b are two arbitrary constants.
For solving the equation we introduce another partial difference equation g so that
the equations f and g are compatible and then common solutions of f and g are
determined using the Charpit’s method.
Equations (22) and (23) are compatible if,

On expanding we obtain the linear partial differential equation,

…(25)

On solving Equation (25) we determine g by finding the integrals of the following
auxiliary equations:

     …(26)

These equations expressed in Equation (26) are termed as the Charpit’s equations
which are equivalent to the characteristics Equation (26).
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Example 4. Find a complete integral of the given equation using Charpit’s method,

             …(27)

Solution: We find the complete integral as follows.

Step 1. Compute   

Set,   
Then,

Step 2. Write the Charpit’s equations to find a solution g(x, y, z, p, q, a).
The Charpit’s equations are of the form,

Therefore,

On integrating, we obtain,

                …(28)

Where a is an arbitrary constant.
Step 3: Now we solve for p and q as follows.
Using Equations (27) and (28), we find that,
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And,

Step 4: Expressing dz = p(x, y, z, a)dx + q(x, y, z, a)dy and finding its solution.

On integrating, we obtain,

This is the complete integral of the Equation (27).

14.6 CLAIRAUT’S FORM

Specifically in mathematical analysis, the Clairaut’s equation or the Clairaut
equation is a differential equation of the form,

Where f is continuously differentiable. It is a particular case of the Lagrange
differential equation.
To solve Clairaut’s equation, we differentiate with respect to x, which will yield,

Therefore,

Hence, we have,
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Either,                              …(29)

Or,                                             …(30)

Considering the former case, i.e., Equation (29) we can state that C = dy/dx for
some constant C.
Now we substitute this into the Clairaut’s equation to obtain the family of
straight line functions given by,

This is considered as the general solution of Clairaut’s equation.
Consider the latter case, i.e., Equation (30),

This states only one or singular solution y(x). The singular solution is generally
represented using parametric notation, as (x(p), y(p)), where p = dy/dx.
By extension, a first order partial differential equation of the form,

is also known as Clairaut’s equation.

14.7 LAGRANGE’S MULTIPLIER METHOD

First order linear partial differential equation in its standard form is expressed
as,

Pp + Qq = R                              …(31)
where P, Q, R are functions of x, y, z and is termed as the Lagrange’s Linear
Equation. This equation is obtained by eliminating arbitrary function f from,

f(u, v) = 0                              …(32)
where u, v are functions of x, y, z.
Its solution depends on the solution of the equations,

                             …(33)
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Differentiating Equation (32) partially with regard to x and y respectively, we
obtain,

Since, Equation (32) is an implicit relation.
More precisely,

                …(34)

[Because  x and y being two independent variables.]

Then from Equation (34) on eliminating , we obtain,

              …(35)

Implying,

                     …(36)

This is the similar as Equation (31) with the equations,

Now in order to find u and v, let u = a and v = b, where a and b are two arbitrary
constants, so that,
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                …(37)

From the above simultaneous equations, we obtain,

Or,

Solution of the above differential equations are u = a and v = b.
Therefore, the solution of Lagrange’s Linear equation Pp + Qq = R is,

 f(u, v) = 0      or       f(a, b) = 0.
Example 5. Solve the following Lagrange’s Linear partial differential equation,

Solution: We find the solution as follows.
Here the auxillary equations are,

Or,

Taking expressions A and B we obtain,

Simplify to obtain,
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Or,   

Which is of the form,

On integration, we obtain,

Similarly we solve for,

Or,

Hence, the desired solution of the given partial differential equation is,

Check Your Progress

6. What is Clairaut’s form of a differential equation?
7. Write Charpit’s equations.

14.8 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1.

2.
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3. A partial differential equation is the unique form of equation which includes
one or more partial derivatives. The order of the highest derivative is called
the order of the equation.

4. If the number of arbitrary constants are equals the number of independent
variables in the given relations, then the partial differential equation obtained
by elimination will be of order one.

5. A differential equation which includes only first order partial differential
coefficients ‘p’ and ‘q’ is termed as partial differential equation of first order.
Additionally, if the degrees of ‘p’ and ‘q’ are unity only then it is termed as
linear partial differential equation of first order.

 6.   

7.

14.9 SUMMARY

• A relation between the variables, including the dependent variable and the
partial differential coefficients of the dependent variable with the two or
more independent variables is termed as a Partial Differential Equation or
the PDE.

• Following are some standard notations for partial differentiation coefficients:

 ,, 
 , ,  

• A partial differential equation is the unique form of equation which includes
one or more partial derivatives. The order of the highest derivative is called
the order of the equation.

• The partial differential equations can be formed either by the elimination of
arbitrary constants or by the elimination of the arbitrary functions from a
relation with one dependent variable and the rest two or more independent
variables.

• The partial differential equation of first order in two independent variables
x, y and the dependent variable z can be written in the form,

   Also, Then, f (x, y, z, p, q) = 0. 
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• Charpit’s equations

• Clairaut’s equation

• First order linear partial differential equation in its standard form is expressed
as,

Pp + Qq = R
where P, Q, R are functions of x, y, z and is termed as the Lagrange’s
Linear Equation

14.10 KEY WORDS

• Order: Order of the differential equation is the order of the highest order
derivative taking place in the differential equation.

• Degree: Degree of the differential equation for only the positive integer is
stated as the highest power of the highest order derivative in it.

• Linear differential equation: A linear differential equation is a differential
equation that is defined by a linear polynomial in the unknown function and
its derivatives.

• Partial differential equation: A partial differential equation is a differential
equation that contains beforehand unknown multivariable functions and their
partial derivatives.

14.11 SELF ASSESSEMENT QUESTIONS AND
EXERCISES

Short Answer Questions

1. What are the conditions observed when a partial differential equation is
formed by elimination of arbitrary constants?

2. What are the conditions observed when a partial differential equation is
formed by elimination of arbitrary functions?

3. What are some standard notations for partial differentiation coefficients?
4. Write a short note on Charpit’s method.
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5. Write a short note on Clairaut’s form.
6. Write a short note on Lagrange’s Multiplier method.

Long Answer Questions

1. Form a partial differential equation by eliminating a, b from the relation,

.

2. Form a partial differential equation by eliminating a, b, c from the relation,

.

3. Form the partial differential equation by eliminating the arbitrary function
from the following equation,

.

4. Form the partial differential equation by eliminating the arbitrary function
from the following equation,

.

5. Solve  given that  when  and

 when .

6. Find a complete integral of the given equation using Charpit’s method,

.

7. Solve the following Lagrange’s linear partial differential equation,

.
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